认识SPSS的工作窗口_数据分析师
在学习SPSS的工作环境之前,应该知道SPSS界面的组成,及各组成部分的功能及特点。启动SPSS后,即可打开SPSS的默认工作界面,如图1-8所示。
SPSS是由多个窗口组成的,各个窗口都有自己的作用。但如果要快速入门,只需要熟悉SPSS中的3个窗口,即数据编辑窗口、输出窗口和语句窗口。
1.数据编辑窗口
数据编辑窗口是SPSS打开的默认窗口,其标题栏上标有Untitledl[DataSet0]-SPSS Data Editor(即未命名的数据编辑窗口)。在该窗口中有一个可扩展的平面二维表格,可以在此窗口中编辑数据文件。
(点击查看大图)图1-8 SPSS的默认工作界面 |
菜 单 项 | 中 文 含 义 | 包括的命令项 |
File | 文件操作 |
新建数据文件、文件的打开、 保存、另存为、读取数据文件等 |
Edit | 文件编辑 | 撤销/恢复、剪切、复制等 |
View | 窗口外观控制 | 状态栏、工具栏、表格线的显示或隐藏等 |
Data | 数据文件建立与编辑 | 定义日期、插入变量、观测量等 |
Transform | 数据转换 | 计算新变量、随机数种子设置、计数等 |
Analyze | 统计分析 | 概括描述、自定义表格、均值比较等 |
Graphs | 统计图表的建立与编辑 | 统计图概览、交互作图方式等 |
Utilities | 实用程序 | 变量列表、文件信息、定义与使用集合等 |
Add-ons | 程序加载项目 | 程序应用、程序服务、可编程延迟等 |
Window | 窗口控制 | 所有窗口最小化、激活窗口列表 |
Help | 帮助 | 主题、教程、案例学习、SPSS主页等 |
(点击查看大图)图1-9 "变量编辑"视图窗口 |
(点击查看大图)图1-10 输出结果 |
(点击查看大图)图1-11 输出窗口 |
(点击查看大图)图1-12 同时打开多个输出窗口 |
注意:当用户保存了某个输出窗口中的内容后,标题栏上将出现用户保存时输入的文件名称,而不是默认的Output1、Output2或Output3。
输出窗口中从上至下,分别是由标题栏、菜单栏、工具栏、输出文本窗口、输入导航窗口和状态栏组成。下面对这些组成部分进行详细的介绍。
标题栏:标题栏位于输出窗口的最上方,显示的是当前打开的输出窗口的名称及最小化按钮、最大化按钮和关闭按钮,如图1-13所示。
图1-13 标题栏 |
菜单栏:输出窗口中一共包括了13个菜单,它比数据编辑窗口多了两个菜单,分别是Insert和Format。Insert菜单主要功能是用来插入或删除分页符、图表编辑、添加新标题、表头、文字等;Format菜单的主要功能是用来对齐、行列转置,页转量、行转量、列转置,调整表格元素尺寸等。菜单栏如图1-14所示。
工具栏:工具栏由各种功能的图标按钮组成,是各种常用功能命令的快捷操作方式,如图1-15所示。
对于工具栏的位置,用户可以根据自己的习惯进行放置,可以将工具栏拖动到窗口中的任何位置。其方法是,将鼠标放在工具栏的下方按住鼠标左键进行拖动,当拖动到所需位置时再松开鼠标即可,如图1-16所示。
图1-14 菜单栏 |
图1-15 工具栏 |
输出文本窗口:输出文本窗口主要用来显示输出信息,包括输出标题、文本、表格和统计图。可以对该窗口中的内容使用鼠标、键盘和Edit菜单项的各种命令进行编辑。输出文本窗口位于输出窗口的右侧,如图1-17所示。
输出导航窗口:输出导航窗口是浏览输出信息的导航器,位于输出窗口的左侧,它以树形结构给出输出信息的提纲,如图1-18所示。
状态栏:状态栏位于输出窗口的最下面一行,它共分为5个区,分别是"信息区"、"指定状态显示区"、"处理状态区"、"观测量计数显示区"和"输出窗口中被选中对象的大小显示区",如图1-19所示。如果是新用户,可以用鼠标指向状态栏上的每个分区,会在鼠标旁弹出该区的功能解释。
在输出窗口中只能打开Viewer document(*.spo)输出文件、SYNTAX(*.sps)SPSS语句文件、Draft Viewer document(*.rft)简化的输出文件,SPSS Script(*.sbs)脚本文件,还有无格式的文本文件(*.txt)。文本文件和其他各类型文件只能在窗口中编辑。
图1-17 输出文本窗口 |
图1-18 输出导航窗口 |
图1-19 状态栏 |
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21