基于大数据的信息系统关键技术研究
信息技术、计算机技术和互联网技术的高速发展促进了人类社会各类数据的爆炸性增长如何对这些结构复杂的大数据进行有效管理己经成为当前社会的热点问题之一。自2011年EMC公司首次在年度大会中提出大数据的概念,己有多家公司和机构对大数据问题进行了研究。由于信息技术己经渗透到人类社会的多个领域,大数据问题会给整个社会带来深刻的影响可以预见,大数据问题必然会给信息技术产业带来一场深刻的技术变革。基于大数据的信息系统的技术创新是未来发展信息技术的关键,也是有关国家发展战略的重要课题。面对着大数据问题带来的机遇和挑战,我国有必要加大科研力度,努力缩小在信息技术领域与国际先进水平的差距。
一、大数据的特征与价值
对于大数据的定义目前仍没有一种通行的标准,不过从数据使用者的角度来讲,大数据可以定义为超过使用者所能处理和分析能力上限的数据。由于信息技术在人类社会的应用广泛而又深刻,各行业的公司、企业乃至政府机构都存储了大量的数据然而,这些大数据内的大量有价值的信息却很少被挖掘出来加以利用。究其原因,一方面是由于目前人们对于大数据的利用价值没有全面而深刻的认识,忽视了大数据中存在的重要信息;另一方面,由于缺乏相关的技术和人才,不能对这些大数据进行有效地处理和分析,以挖掘出其中有价值的信息。
大数据的基本特征是多样性、体量、速度以及价值所谓多样性是指大数据的来源丰富,且结构组成也相对多样化:体量即指数据量卜大:而速度是指数据的生成、变化和处理的速度都很快:价值则指大数据蕴含的应用价值。由于大数据的这些基本特征给当前的数据处理和分析技术带来了极大的难度,也给信息技术发展带来了新的挑战。为了对大数据进行处理以挖掘有价值的信息,我们不仅需要提升硬件设施的性能,而且要研发出能够处理大容量数据的技术、算法以及应用软件。
现代社会的信息化和数字化必然会导致大量数据的产生和累积。就现代企业而言,其在采购、生产、运输、销伟等环节都产生了大量数据。这些数据包含了企业运营过程中接触到的供应商、客户、人力资源等重要信息。现代企业的诸多决策很大程度上依赖于这些数据分析的结果。国外相关的研究表明,大数据存在着卜大的潜力,将会给整个社会的经济发展、技术创新和价值取向带来重大的变革充分发挥大数据的价值,企业可以显着提高其运营效益:而政府的运行和管理效率也会得到大幅提高。总之,大数据的潜在价值卜大,研究基于大数据的信息系统关键技术具有重要的战略意义。
二、基于大数据的信息系统关键技术
2.1分布式数据库与处理系统
由于大数据的多样性和大体量等特征,关系型数据库在处理大数据时普遍存在着不可忽视的缺陷。而大数据的价值密度也相对较低,对于数据库提出了新的要求。分布式数据库系统采用更加简单的模型对数据信息进行管理Bigtable技术采用字符串的形式实现了对数据信息的高效管理:而Dynam.技术采用分布式哈希表等技术也实现对基于大数据的信息系统的可靠管理。分布式的数据处理系统的主要数据处理技术包括批处理技术和流处理技术。批处理技术按照某一特定方式将大数据划分为多个部分。划分后的数据可以同时在多个处理器进行分析和处理批处理技术削弱了数据之间的关联性,以达到增强数据可调度性的目的,其技术关键在于数据的划分方式、分配方式以及处理技术而流处理技术则是将大数据视为连续的流,进入系统的数据能被实时处理并将结果返同。流处理技术显着地提升了系统的时效性。
2. 2分布式文件管理技术
传统的文件管理技术在存储和管理大数据时的表现难以让人满意。因此,针对大数据信息系统设计的分布式文件管理技术在各大互联网企业中己经得到了应用,并且收到了不错的效果其中,Google提出的GFS文件管理技术以大量低成本服务器为基础,组建了一个具有较高拓展性的文件管理系统。大量数据
被分块存储到不同的服务器中,并通过关联链接等方式进行管理由于该技术在存储和读取大数据时效率较低,多种类GFS技术采用了增加缓冲层的方式以提高数据的存储和读取速度。
除上述技术以外,基于大数据的信息系统的关键技术还包括数据挖掘技术、稀疏处理技术等。
三、结语
大数据的潜在价值己经得到了业内人士的广泛关注和认可,研究基于大数据的信息系统关键技术不仅与信息产业的发展密切相关,而且将在一定程度上影响整个国家的发展战略。随着信息技术的不断发展和数字化进程的不断推进,大数据信息系统必然会对整个人类社会产生深远的影响。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20