以解决问题的姿态玩大数据_数据分析师
2011年,著名管理咨询公司麦肯锡声称:“数据已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于大数据的挖掘和运用,预示着新一波生产力增长和消费者盈余浪潮的到来。”由此引发了大数据的热潮,美国政府2012年宣布投资2亿美元启动“大数据研究和发展计划”,IBM,微软、谷歌、亚马逊等大型企业纷纷投入。中国政府紧接着提出“十二五国家政务信息化建设工程规划”,北京、上海、广东等地陆续推出大数据研发战略,阿里、百度、腾迅、华为等大型企业都已涉足该领域,更有许多新兴企业致力于此,大数据成为了继物联网、云计算、移动互联网之后,又一个信息技术产业发展的制高点!
所谓大数据,必须有足够大的数据量才能发挥它的价值。但是,由于现阶段互联网数据真实性的问题,物联网数据量不够的问题,以及数据安全的问题,对大数据走向应用产生了较大束缚,以至于大部分大数据应用只能存在于“实验室中”,且大数据厂商开始纠结单点上的数据精度,单这一点便是有悖于大数据发展常规的。
在如此现状之下,罗克佳华—这家有着计算机系统集成一级资质,属“应用基因”系的企业涉足大数据,是否能够独善其身,让大数据概念回归本位呢?且看罗克佳华董事长李玮在接受本刊专访时的“如是说”。
我们不是实验室
“罗克佳华做大数据,从不追求一个点的精度,我又不是实验室!我要通过广泛布点的方式获取更多的数据,找到源头,提供解决问题的依据,也就是说,罗克佳华从来不做实验室里的大数据,只从解决问题的角度做可用的大数据。”李玮一句话,态度明确:我—罗克佳华做的所有工作都是以解决问题为目的,以应用为宗旨。
李玮说,首先罗克佳华是一家标准的物联网企业,因此就要做物联网企业该做的事。那么,物联网企业该做什么呢?“我们认为,物联网的规模性必定导致集中的数据服务,也就是说物联网的大量感知终端将产生前所未有的集中的数据量,而这些集中数据通过各种算法,依据各种需求,将延伸出无以数计的服务,这些服务才是物联网的真正价值所在。”而罗克佳华这些年,不管是卖设备,还是卖解决方案,都没落下一件事,就是提供服务。因此,在物联网时代,依据物联网发展线路图,罗克佳华将自己的发展布局做了更为清晰的调整:走云+端之路,“云+端的意思,就是物联网技术和数据服务的结合”。
如何提供更好的服务,罗克佳华也并非一开始就找到了门路。比如在环保监测方面,也做了多种尝试,比如先是重视监测,后来才发现“点多面广的综合监测”得到的效果更好,便将轻监测、广布点的模式推广到其他诸如农业溯源、煤矿安全等领域中。
例如罗克佳华为北京通州做的环保物联网系统,将所有的环保信息化系统进行整合,并结合大家关注的空气质量问题,在全区范围布设了 500个监测点,进行物联网监测,同时将各个工业污染源、农村面源、汽车尾气等导致空气质量变化的排放清单进行实时分析,不仅做到了物联网监测,也充分发挥了数据分析优势,实现了对空气质量的预警预报,以及对环保工作的综合优化管理。
愿景VS红线
至此,罗克佳华的“智能端”和“云服务”形成了一种相辅相成的促进作用,计划在几年内成为节能、环保领域内最强的物联网服务型企业。但成功之路必有坎坷,云+端模式要发展有一个非常重要的基础条件,即政府和行业对数据质量、价值、权益、隐私、安全等产生充分认识,出台量化与保障措施。也就是“数据权属”和“企业观念”两个问题。而正如前文所言,中国目前仍处在大数据的起步阶段,相关立法颇多空白,国内企业的意识也有待转变。
罗克佳华的服务方式是通过监测系统获得真实有效的数据进行分析,可几乎所有用户都在系统布设之后谈及数据保密问题,对项目产生了巨大的干扰。更有甚者,罗克佳华曾试图将一些污染源数据向同行的企业开放,便于他们在对比中提高自己,但这些隐去了名字的数据在不久后就被企业告了状,最后由政府出面叫停。
“物联网数据经常会触到红线,数据运营,如履薄冰啊!”李玮直言数据权属问题是挡在他们身前的“拦路虎”,更是他们将来必须解决的核心问题。不说罗克佳华有许多政府合作项目,导致权属问题更加复杂,光是环境数据及工业设备信号等公共数据如何界定、如何共享都已是非常纠结的问题。
不过,虽然有这方面的忧虑,但毕竟前路漫漫,还有许多未知数,罗克佳华在行动上并没有丝毫的犹豫。本着应用为先的原则,只要是有利于推广和应用的项目,不管是政府买单或是市场化,他们都会积极去做。为了拿出更加专业的精品,他们更以开放的姿态寻求跨界的合作企业和专家团队。“我们做技术的,做好技术,社会要发展,体制待改善,机会就有的。物联网数据要和同行业开放才会更有活力和竞争力,开放的意识形态才会造就开放的国家。”
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21