用数据和算法来设计个性化健身课程,“沸腾时刻”想成为线上专业“私教”
虽然帝都承办了 2008 年奥运会,天朝国民也为此盛事狂欢,但除了金牌数字让人血脉偾张以外,日常体育锻炼和健身还离大多数国人很远。而即使近几年有不少健身房在生活小区周边建立起来,也往往因为上班族时间资源的稀缺以及空间距离带来的不便而让人在办卡后无法形成持续的运动健身习惯。
不过好消息是,随着手机、平板等移动设备因其便携性而成为人体不可或缺的一部分,好的健身内容也可以被装进“口袋”、随身携带,降低了人们持续消费健身内容的门槛,从而有助于形成良好的运动习惯——而线上健身平台“沸腾时刻”想做的就是这样一件事。
简单来说,“沸腾时刻”想通过收集用户身体的数据,用算法为其设计个性化的视频健身课程,替代传统的线下“私教”。
初次使用沸腾时刻时,用户需要手动输入自己的身高、体重、腰围、臀围等信息,让系统对其身材有个基础的判断和了解。但仅有这些数据还不足够系统精准判断,所以采集了基础数据后,沸腾时刻还会要求用户跟着视频完成“体测”环节,以判断用户体能适合从何种强度的训练开始做起。
说到这里,有人可能会好奇:纯线上的视频播放方式,如何得知用户线下“体测”的成绩呢?这正是沸腾时刻很有意思的一点——它会为用户提供可交互的视频课程,让用户跟着视频中的教练完成一系列动作,比如“做 30 秒的高抬腿”,当高抬腿的教学视频播放完后,视频便会暂停并弹出一个表单,让用户填写他在 30 秒内可以完成的高抬腿动作的个数——通过这类数据的收集,系统便可以判断出用户的体能大概在什么样的水平。
当然,这类交互不仅仅限于体能测试的环节,在用户后续的健身过程中,为其配套的健身视频都会不断采取这种交互方式来收集用户的运动数据,以跟踪其锻炼效果,并优化后续为其推送的视频健身课程,让用户可以循序渐进地达到健身目标。这也就是之前所说的,用数据+算法去替代掉原来线下的私教所做的事。
不过,用纯粹的线上方式来做健身教学,除了数据收集这一弱点以外,还有对用户把控较弱的缺点——就像 Coursera 上的视频课程一样,用户辍学的门槛极低,也没有线下的同学和老师氛围来让用户对辍学形成负罪感,而类似的沸腾时刻也极可能面临同样问题。
针对这一点,沸腾时刻的创始人 Rocky 说,通常健身坚持不下去最大的问题就是线下去健身房的不方便性,而他们已经用线上可交互健身视频的方式去减少原来的不便捷性了。除此之外,还可能让人坚持不下去的因素就是视频内容不够丰富,每天练习的都是几乎一样内容,便很容易失去乐趣(曾经跟着视频跳过郑多燕的菇凉们应该深有感触)。
对此,沸腾时刻的做法是,他们在线下和有名的私教合作录制视频课程,目前已经有成百集的内容,可以让用户每天都有不一样的健身视频观看,且这些视频都是个性化定制、符合用户身体需求的。而健身这件事,只要用户能坚持 30 到 60 天,便可以看到自己身材的巨大改变,尝到这个甜头之后用户自然会对健身产生黏性了。
盈利模式上,沸腾时刻现阶段采取初级视频课程免费,高级会员按年卡收费的模式。付费的高级会员可以购买沸腾时刻提供的可穿戴设备(让收集到的用户数据更加精准),并免费到线下健身房进行锻炼(有点类似ClassPass整进散出的模式)。不过 Rocky 认为,和为线下私教导流的方式并不是长期的,他们认为最有价值的还是积累下来的用户健康大数据,未来可以将收集到的用户健康大数据开放给各类厂商进行合作。
团队上,沸腾时刻创始人 Rocky 从美国伊利诺伊大学 MBA 毕业后回国创业,在大学时曾是 CUBA 冠军校队的成员,在中美健身届都积累下了一些资源,因而可以以较低的成本和前央视的节目团队以及国内外的健身、健美冠军教练合作拍摄视频,这也算是其创业的早期优势之一。目前沸腾时刻已经上线试运营一年,最近进行了全新改版,而其 app 也会在近日推出。团队也已拿到琴江创投千万人民币级别的天使投资。
至于类似的产品,国外和沸腾时刻在线上或是线下有些相同之处的公司有FitStar、Fitmob,国内有“我开始”等。而从 2014 年起,从 P2P 角度、线下健身房整合角度、私教角度等等方向切入的各类围绕运动健康服务也不断涌现,比如练练、开练、约教练等,估计 2015 年还会有更多玩家涌现,我们会持续保持关注。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21