谈谈AWS上超实用的大数据分析服务_数据分析师
AWS在云端为大数据分析提供了几个公共云交付选项。下面来看下AWS是否符合你所在企业的路线。
大数据的关键就是大。大量结构化和非结构化信息——通常是PB以上——会让大多数传统数据管理方法陷入困境。和政府机构一样,本地成本会打破大多数福布斯全球2000强的公司的预算。
这也就是云的切入点。诸如AmazonWeb Services的云提供商目前可以提供强大的,节省成本的方法来支持和分析大数据。通常会根据使用情况定价,这些云服务将彻底改变我们对自身企业的理解方式。
这不仅仅是数据格式化和结构化来驱动有用的报告。它还是可操作的数据,可以提供对业务的实时查看。我们还可以将此分析功能和动态业务流程链接起来从而让企业可以自我修复和自我优化。这也是其真正价值的所在。
AWS的大数据分析产品有时让人迷惑不解,本文将揭开它的神秘面纱。
多种多样的服务
当你在公共云里做大数据分析的时候首先需要考虑的问题就是数据集成,无论你用的是AWS还是其他提供商。你的数据需要从你所在企业的操作性数据存储流入大数据系统,而这些很可能是在云中进行的。
AWS支持数据传输服务,例如AWS Direct Connect可以将大数据移入云中,也可以从云中移出。但是它并不能进行快速迁移。因为它是不收费的,所以当你对实时性要求不强时还是可以接受的。
另外一个中间件类型的服务是Amazon Kinesis。这是针对大数据流实时处理的一项云服务。它所支持的数据吞吐量从兆字节每秒到吉字节每秒,而且它还能够处理来自成千上万不同数据源的数据流。要考虑从你所在企业的多个数据源到AWS上的数据库选择来运行数据流。
从中间件迁移至实际数据库,AWS服务目录拥有SQL和NoSQL混合的数据库技术。Amazon DynamoDB是一项可管理的NoSQL数据库服务,很多企业已经发现了其价值。DynamoDB拥有有保证的吞吐量和极小的延时,这对于那些必须和大数据进行快速交互的大数据项目来说是非常适合的,例如移动计算支持。
数据库和Hadoop技术
Amazon Relational Database Service(RDS)是一个精心设计的关系型数据库,它能够对AWS云进行扩展。RDS适合于那些需要保持关系型模型且规模不会太大(大部分不会)的大数据系统。对此,你需要Amazon Redshift,它是一个专门设计用来支持大数据分析和传统数据仓库的拍字节规模的数据库。
Redshift使用了柱状存储技术和分布式查询,那些管理本地数据仓库的人应该对此非常熟悉。但是Redshift的成本却不到每年1000美元。
最后,Amazon Elastic MapReduce是一个基于Amazon ElasticCompute Cloud的Hadoop文件系统框架,它提供map和reduce查询并且利用核心Hadoop工具。
总结
AWS为云端的大数据分析提供了几个公共云交付功能。AWS技术是可以满足大多数的需求,但是AWS并不是唯一提供大数据技术的云。Google和Microsoft同样有与之竞争的系统,而且还有一些规模较小的企业也在跃跃欲试。但是AWS为那些要建立大数据系统的架构师和开发人员提供了一站式的购物服务——并且其数据库服务和中间件目录是十分引人瞩目的。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20