机器学习和文本分析_数据分析师
当计算机更好地理解了自然语言,新的领域不断被开创,例如:用户应用的人机界面的提升,更为完善搜素引擎,Cortana和Siri这样的个人助理和一些分析给定文献的工具。例如,一个新闻网站如果能够将文章里提到的人使用算法链接到维于文本中额外信息的利用,用户能够轻易分别文章所讲的显著实体(如:运动员,球队等),如图1所示:
图1 文本分析的愿景
文本分析一直是科学研究较为活跃的领域。毕竟创造所有人类知识(文本表示)不是一项轻松的工作。90年代至今的早期工作,包括Brill标签器[1]的工作确定了句子中的部分词性,[2]的工作也对新工作有一定的启示。微软研究院一直热衷于在科学领域创造新的想法,但是我们又进一步将新科技落到实处,创造出了产品级别的技术。
在这篇博客通讯中,我们简要展示了人工智能技术如何通过利用命名实体识别(NER)技术应用于文本分析。作为一个提供完整并可直接使用的机器学习功能的平台,Microsoft Azure ML包含了文本分析的基本能力,并且特别支持了NER–因此我们可以将笼统的概念与具体的设计选择联系起来。
NER是将文本与人、地点、组织、运动队伍等进行参照的技术。让我们概览一下如何利用“有监督学习”解决这个问题:
图2 命名实体识别流程图
在设计时间或“学习时间”,系统会利用训练数据创造一个学习任务的“模型”。这种方法从小部分例子中概化来处理任意新文本。
训练数据包括了人类标注的被学习的命名实体的标签。这看起来就像:“当Chiris Bosh超常发挥,迈阿密热火队将变得强大无比”。这个模型预期能够从自然的例子中学习,训练得能够从新输入的文本中识别运动员实体和队名实体。
设计时间流程的效果取决于特征提取阶段–一般而言,特征提取越多,模型越强大。比如在一个文本中和一个词相关的局部语句[比如,前k个词和后k个词]是我们人类用来将词和实体联系起来的强大特征。例如,在句子“San Francisco beat the Cardinals in an intense match yesterday”,很显然句子中提到的“San Francisco”指一个运动队而不是地名旧金山。字母大写是识别命名实体例如文中出现的人、地点的又一实用特征。
模型训练就是机器学习做的事,如:产生一个好的模型。一般而言,特征的选择是一个复杂的组合过程。有许多可以用的机器学习技术,包括感知元(Perceptron)、条件随机场(Conditional Random Fields)等。技术的选择依赖于使用有限训练数据的模型精确性、处理的素的和能够被自动学习的命名实体数量。例如,Azure ML NER模块默认支持三种类型实体:人、地点和组织。
运行时间流程的目标是输入未标记文本并且产生被创建出的模型在设计时间识别的相应的输出文本。正如人们能够观察到的一样,运行时间流程从设计时间流程服用了特征提取模块–因此,如果对于一个应用高效彻底的实体识别是必须的话,必须在运行进程中提供相对轻量的高值特性。作为一个说明性的例子,Azure ML NER模块使用了一小部分容易计算的、主要基于本地文本的特性,事实证明也十分有效。处理过程中产生的歧义通常利用Viterbi的工具解决,将实体标签分配给一系列输入单词。
值得注意的是,NER只是开始,但是却是从原始文本中捕获“知识”的重要一步。最近的博客通讯描述了NER加上一系列相关技术是如何提升Bing体育app的体验的–非常相似的NER栈也可供你在Azure ML中使用。除了NER,自然语言分词、链接和显著性、情感分析、事实提取等代表了提升用户文本相关应用体验的重要的步骤,这是能够帮助你使文本“生动”的额外技术。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策成为商业常态的今天,数据分析师这一职业正迎来前所未有的机遇与挑战。很多希望转行或初入职场的人士不禁询问:数 ...
2024-12-25数据分析师,这一近年来炙手可热的职业,吸引了大量求职者的注意。凭借在大数据时代中的关键作用,数据分析师不仅需要具备处理数 ...
2024-12-25在当今数字化变革的浪潮中,数据分析师这一职业正迎来前所未有的发展机遇。回想我自己初入数据分析行业时,那种既兴奋又略显谨慎 ...
2024-12-25在当今信息爆炸的时代,数据已经像空气一样无处不在,而数据分析则是解锁这些信息宝藏的钥匙。数据分析的过程就像是一次探险,从 ...
2024-12-25在职场上,拍脑袋做决策的时代早已过去。数据分析正在成为每个职场人的核心竞争力,不仅能帮你找到问题,还能提供解决方案,提升 ...
2024-12-24Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19