
学Excel可以不去管函数,不去管宏,只需把握一个要点就可以了:学会设计一张个标准、正确的源数据表。
我们使用Excel的最终目的,是为了得到各式各样用于决策的分类汇总表,一个源数据表完全可以满足要求。它的设计理念却很简单,就是是一张中规中矩、填满数据的一维明细表。
这个表有三大优势:通用、简洁、规范。无论是销售、市场数据,还是物流、财务数据,都可以用完全相同的方式存放于源数据表中,区别仅仅在于字段名称和具体内容。
一项工作有时可以牵扯出几十张Excel表,大量重复数据,却又没有一份是完整的。相反,如果坚持一项工作一张表格的原则,即便与很多数据打交道,Excel文件也可以很少。这样你可以轻松找到需要的数据;最大程度避免重复性工作;业务数据容易备份和交接;还可以将“变”表的技能发挥得淋漓尽致。
但是要设计这张天下第一表,最重要的资质是工作经验!如果你只在于技能的学习,而忽略了对工作本身的积累和感悟,最终还是无法驾驭Excel。
表格毁容五宗罪(内含源数据表制作方法)
第一宗罪:标题的位置不对
我们常常因为过分强调视觉效果,或者图一时方便,情不自禁就做出形态各异的错误表格,为后续工作埋下隐患。在Excel默认的规则里,连续数据区域的首行为标题行,空白工资表首行也被默认为标题行。
但是标题行和标题不同,前者代表了每列数据的属性,是筛选和排序的字段依据;而后者只是让阅读该表的人知道这是一张什么表,除此以外不具备任何功能。所以,不要让标题占用工作表首行。
第二宗罪:令人纠结的填写顺序
之所以会做出一张顺序颠倒的表格,是因为设计的时候忽略了填表流程和工作流程之间的关系。我们在Excel中的动作,尤其是数据录入的动作,必须与工作顺序保持一致。
就拿请假这件事来说,了解员工请假信息的顺序通常是:今天是什么日期?请假的是谁?请的什么假?请几天?转换成Excel字段,就变成日期、姓名、请假类型、请假天数。只要把这些字段从左到右依次排列,就能得到顺序正确的源数据表。所以只要在设计之前想清楚工作流程,排个顺序还不是小case!所谓的设计其实就这么简单。
第三宗罪:人为设置的分隔列(类似段落空行)破坏了数据完整性
这种做法会,在满足视觉需求的同时,破坏数据的完整性。
Excel是依据行和列的连续位置识别数据之间的关联性,所以当数据被强行分开后,Excel认为它们之间没有任何关系,于是很多分析功能的实现都会受到影响。姑且不说筛选、排序、函数匹配和自动获得分类汇总表,一个最直观的影响就是当你选中一个单元格,再按Ctrl+A,本来应该把所有数据全选上的,现在却只能选中1/3的数据。仅仅是选中数据这一项工作,就会因为这些人为的隔断让你有得忙。所以,对于源数据表,保持数据之间的连续性非常重要。
第四宗罪:合并单元格。(悲剧啊……身受其害啊……要长记性啊……)
严重破坏了数据结构在源数据表中合并单元格,是最常见的操作。可这种看似让数据更加清晰可见的方式,对表格的破坏性却远远胜过前面几例。能做出这种表格样式,首先是因为缺乏天下第一表的概念,同时,也离不开对合并功能的长期误读。
“合并及居中”的使用范围仅限于需要打印的表单,如招聘表、调岗申请表、签到表等。而在源数据表中,它被全面禁止使用,即任何情况下都不需要出现合并单元格。源数据表里的明细数据必须有一条记录一条,所有单元格都应该被填满,每一行数据都必须完整并且结构整齐,就像话费详单一样。
合并单元格之所以影响数据分析,是因为合并以后,只有首个单元格有数据,其他的都是空白单元格。另外,合并单元格还造成整个数据区域的单元格大小不一。所以在对数据进行排序时,Excel会提示错误,导致排序功能无法使用。
第五宗罪:源数据被分别记录在不同的工作表
大多数事情都是分时容易聚时难,Excel也不例外:分开源数据很容易,合起来就很难。我们就应该把同类型的数据录入到一张工作表中,而不要分开记录。因为源数据表的数据完整性和连贯性,会直接影响到数据分析的过程和结果。
把一年12个月的数据分成12张工作表是出于什么目的?为了看着方便,也容易找到数据?错了!放一张工作表里,筛选一下,也能看着方便,找着容易,况且还能运用更多的技能对数据进行分析。
Excel是强大的数据处理软件,它有它的规则。视觉效果固然重要,但还是要讲究方便实用。一张工作表提供了数万行甚至数百万行(不同版本)的数据空间,足够你折腾了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26