京公网安备 11010802034615号
经营许可证编号:京B2-20210330
学Excel可以不去管函数,不去管宏,只需把握一个要点就可以了:学会设计一张个标准、正确的源数据表。
我们使用Excel的最终目的,是为了得到各式各样用于决策的分类汇总表,一个源数据表完全可以满足要求。它的设计理念却很简单,就是是一张中规中矩、填满数据的一维明细表。
这个表有三大优势:通用、简洁、规范。无论是销售、市场数据,还是物流、财务数据,都可以用完全相同的方式存放于源数据表中,区别仅仅在于字段名称和具体内容。
一项工作有时可以牵扯出几十张Excel表,大量重复数据,却又没有一份是完整的。相反,如果坚持一项工作一张表格的原则,即便与很多数据打交道,Excel文件也可以很少。这样你可以轻松找到需要的数据;最大程度避免重复性工作;业务数据容易备份和交接;还可以将“变”表的技能发挥得淋漓尽致。
但是要设计这张天下第一表,最重要的资质是工作经验!如果你只在于技能的学习,而忽略了对工作本身的积累和感悟,最终还是无法驾驭Excel。
表格毁容五宗罪(内含源数据表制作方法)
第一宗罪:标题的位置不对
我们常常因为过分强调视觉效果,或者图一时方便,情不自禁就做出形态各异的错误表格,为后续工作埋下隐患。在Excel默认的规则里,连续数据区域的首行为标题行,空白工资表首行也被默认为标题行。
但是标题行和标题不同,前者代表了每列数据的属性,是筛选和排序的字段依据;而后者只是让阅读该表的人知道这是一张什么表,除此以外不具备任何功能。所以,不要让标题占用工作表首行。
第二宗罪:令人纠结的填写顺序
之所以会做出一张顺序颠倒的表格,是因为设计的时候忽略了填表流程和工作流程之间的关系。我们在Excel中的动作,尤其是数据录入的动作,必须与工作顺序保持一致。
就拿请假这件事来说,了解员工请假信息的顺序通常是:今天是什么日期?请假的是谁?请的什么假?请几天?转换成Excel字段,就变成日期、姓名、请假类型、请假天数。只要把这些字段从左到右依次排列,就能得到顺序正确的源数据表。所以只要在设计之前想清楚工作流程,排个顺序还不是小case!所谓的设计其实就这么简单。
第三宗罪:人为设置的分隔列(类似段落空行)破坏了数据完整性
这种做法会,在满足视觉需求的同时,破坏数据的完整性。
Excel是依据行和列的连续位置识别数据之间的关联性,所以当数据被强行分开后,Excel认为它们之间没有任何关系,于是很多分析功能的实现都会受到影响。姑且不说筛选、排序、函数匹配和自动获得分类汇总表,一个最直观的影响就是当你选中一个单元格,再按Ctrl+A,本来应该把所有数据全选上的,现在却只能选中1/3的数据。仅仅是选中数据这一项工作,就会因为这些人为的隔断让你有得忙。所以,对于源数据表,保持数据之间的连续性非常重要。
第四宗罪:合并单元格。(悲剧啊……身受其害啊……要长记性啊……)
严重破坏了数据结构在源数据表中合并单元格,是最常见的操作。可这种看似让数据更加清晰可见的方式,对表格的破坏性却远远胜过前面几例。能做出这种表格样式,首先是因为缺乏天下第一表的概念,同时,也离不开对合并功能的长期误读。
“合并及居中”的使用范围仅限于需要打印的表单,如招聘表、调岗申请表、签到表等。而在源数据表中,它被全面禁止使用,即任何情况下都不需要出现合并单元格。源数据表里的明细数据必须有一条记录一条,所有单元格都应该被填满,每一行数据都必须完整并且结构整齐,就像话费详单一样。
合并单元格之所以影响数据分析,是因为合并以后,只有首个单元格有数据,其他的都是空白单元格。另外,合并单元格还造成整个数据区域的单元格大小不一。所以在对数据进行排序时,Excel会提示错误,导致排序功能无法使用。
第五宗罪:源数据被分别记录在不同的工作表
大多数事情都是分时容易聚时难,Excel也不例外:分开源数据很容易,合起来就很难。我们就应该把同类型的数据录入到一张工作表中,而不要分开记录。因为源数据表的数据完整性和连贯性,会直接影响到数据分析的过程和结果。
把一年12个月的数据分成12张工作表是出于什么目的?为了看着方便,也容易找到数据?错了!放一张工作表里,筛选一下,也能看着方便,找着容易,况且还能运用更多的技能对数据进行分析。
Excel是强大的数据处理软件,它有它的规则。视觉效果固然重要,但还是要讲究方便实用。一张工作表提供了数万行甚至数百万行(不同版本)的数据空间,足够你折腾了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23