学Excel可以不去管函数,不去管宏,只需把握一个要点就可以了:学会设计一张个标准、正确的源数据表。
我们使用Excel的最终目的,是为了得到各式各样用于决策的分类汇总表,一个源数据表完全可以满足要求。它的设计理念却很简单,就是是一张中规中矩、填满数据的一维明细表。
这个表有三大优势:通用、简洁、规范。无论是销售、市场数据,还是物流、财务数据,都可以用完全相同的方式存放于源数据表中,区别仅仅在于字段名称和具体内容。
一项工作有时可以牵扯出几十张Excel表,大量重复数据,却又没有一份是完整的。相反,如果坚持一项工作一张表格的原则,即便与很多数据打交道,Excel文件也可以很少。这样你可以轻松找到需要的数据;最大程度避免重复性工作;业务数据容易备份和交接;还可以将“变”表的技能发挥得淋漓尽致。
但是要设计这张天下第一表,最重要的资质是工作经验!如果你只在于技能的学习,而忽略了对工作本身的积累和感悟,最终还是无法驾驭Excel。
表格毁容五宗罪(内含源数据表制作方法)
第一宗罪:标题的位置不对
我们常常因为过分强调视觉效果,或者图一时方便,情不自禁就做出形态各异的错误表格,为后续工作埋下隐患。在Excel默认的规则里,连续数据区域的首行为标题行,空白工资表首行也被默认为标题行。
但是标题行和标题不同,前者代表了每列数据的属性,是筛选和排序的字段依据;而后者只是让阅读该表的人知道这是一张什么表,除此以外不具备任何功能。所以,不要让标题占用工作表首行。
第二宗罪:令人纠结的填写顺序
之所以会做出一张顺序颠倒的表格,是因为设计的时候忽略了填表流程和工作流程之间的关系。我们在Excel中的动作,尤其是数据录入的动作,必须与工作顺序保持一致。
就拿请假这件事来说,了解员工请假信息的顺序通常是:今天是什么日期?请假的是谁?请的什么假?请几天?转换成Excel字段,就变成日期、姓名、请假类型、请假天数。只要把这些字段从左到右依次排列,就能得到顺序正确的源数据表。所以只要在设计之前想清楚工作流程,排个顺序还不是小case!所谓的设计其实就这么简单。
第三宗罪:人为设置的分隔列(类似段落空行)破坏了数据完整性
这种做法会,在满足视觉需求的同时,破坏数据的完整性。
Excel是依据行和列的连续位置识别数据之间的关联性,所以当数据被强行分开后,Excel认为它们之间没有任何关系,于是很多分析功能的实现都会受到影响。姑且不说筛选、排序、函数匹配和自动获得分类汇总表,一个最直观的影响就是当你选中一个单元格,再按Ctrl+A,本来应该把所有数据全选上的,现在却只能选中1/3的数据。仅仅是选中数据这一项工作,就会因为这些人为的隔断让你有得忙。所以,对于源数据表,保持数据之间的连续性非常重要。
第四宗罪:合并单元格。(悲剧啊……身受其害啊……要长记性啊……)
严重破坏了数据结构在源数据表中合并单元格,是最常见的操作。可这种看似让数据更加清晰可见的方式,对表格的破坏性却远远胜过前面几例。能做出这种表格样式,首先是因为缺乏天下第一表的概念,同时,也离不开对合并功能的长期误读。
“合并及居中”的使用范围仅限于需要打印的表单,如招聘表、调岗申请表、签到表等。而在源数据表中,它被全面禁止使用,即任何情况下都不需要出现合并单元格。源数据表里的明细数据必须有一条记录一条,所有单元格都应该被填满,每一行数据都必须完整并且结构整齐,就像话费详单一样。
合并单元格之所以影响数据分析,是因为合并以后,只有首个单元格有数据,其他的都是空白单元格。另外,合并单元格还造成整个数据区域的单元格大小不一。所以在对数据进行排序时,Excel会提示错误,导致排序功能无法使用。
第五宗罪:源数据被分别记录在不同的工作表
大多数事情都是分时容易聚时难,Excel也不例外:分开源数据很容易,合起来就很难。我们就应该把同类型的数据录入到一张工作表中,而不要分开记录。因为源数据表的数据完整性和连贯性,会直接影响到数据分析的过程和结果。
把一年12个月的数据分成12张工作表是出于什么目的?为了看着方便,也容易找到数据?错了!放一张工作表里,筛选一下,也能看着方便,找着容易,况且还能运用更多的技能对数据进行分析。
Excel是强大的数据处理软件,它有它的规则。视觉效果固然重要,但还是要讲究方便实用。一张工作表提供了数万行甚至数百万行(不同版本)的数据空间,足够你折腾了。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21