继腾讯、百度和新浪之后,基金公司也开始与阿里合作开发指数,并计划将相应的公募基金推向市场。
中证指数有限公司此前宣布,于2015年1月21日正式发布中证淘金大数据100指数。该指数由博时基金管理有限公司定制开发,成为首条使用蚂蚁金服旗下金融信息服务平台提供的交易型趋势统计数据的指数。“指数发布后,相应的产品可能要到春节后才可能发行。”博时基金内部人士对《中国经营报》记者透露。
作为该指数的开发公司,上海恒生聚源数据服务有限公司(以下简称“恒生聚源”)总经理金德玮透露,经过一段保护期后,其他基金公司也可以使用该指数。此外,恒生聚源还计划推出聚淘系列指数化投资品种,即通过对蚂蚁金服旗下支付宝金融信息服务平台所提供的某些消费品细分行业电商消费统计数据进行深入挖掘,转化成相应的指数化投资产品,一些公募和私募基金都对这些产品表示出了兴趣。
电商数据变身指基
根据中证指数有限公司的公告,中证淘金大数据100 指数以电商商品类目相关中证三级行业的所有股票为样本空间,从中根据综合财务因子、市场驱动因子、聚源电商大数据因子选取综合评分最高的 100 名作为样本股,并采用等权重计算。其中,聚源电商大数据因子依据恒生聚源数据服务有限公司根据上述交易统计数据加工得到的行业投研指标计算。
历史模拟数据显示,2010 年以来,中证淘金大数据100指数的年化收益率为36.7% ,年化波动率24.3% ,同期沪深300指数的年化收益率和波动率分别为-2.1%和21.5% 。
“这个指数可以供投资者跟踪大消费类行业股票。”金德玮说,最初博时基金找到阿里谈合作,此后阿里将电商大数据提供给恒生聚源,恒生聚源对相关数据进行脱敏处理(不能让市场还原出原始数据和原始数据的特性),随后加工成对应的一系列电商数据因子,能够表征这些行业销量、行业集中度、商品价格的变化趋势等等。中证指数公司在此间作为通道,进行指数发布。
在金德玮看来,该指数对大消费行业具有较高参考价值。他解释说,自2010年以后,电商行业的发展如火如荼,电商销量在社会消费品零售总额里面的比重快速提高。电商既然占到这么大比重,那它足以表征所对应行业、商品的变化趋势。随着占有率越来越高,这个表征性也越来越好。
“阿里提供的数据转化为指数产品应该还是具有很高的参考价值,因为数据样本够新、够全。”普华永道一位不愿具名的分析人士表示。
金德玮说,和国家统计局的社会消费品零售总额相比,该指数表征性更好。因为国家统计局的数据是基于抽样样本的统计而来,而恒生聚源是根据全数据样本的统计分析而来。
掘金大数据基金
据统计,目前已有腾讯、百度、新浪三家互联网大佬与专业机构或基金公司合作开发了指数,并且建立在这些指数上的公募指数型基金已经或正在推向市场。
2014年9月17日,百度与广发基金合作的“广发中证百度百发策略100指数基金”正式获批,并于10月底发行。这是首只真正意义上跟踪具有互联网基因的指数的指数型基金产品。此外,腾讯与济安金信科技有限公司早前也合作开发了“中证腾安价值100指数”,该指数已于去年3月份开发成立了一只公募基金——“银河定投宝中证腾安价值100”。新浪则与南方基金合作开发了大数据100指数、大数据300指数,这两个指数预计日后也会开发形成公募指数型基金。
其中,从数据上来看,已发行的大数据指数基金表现尚可。“银河定投宝中证腾安价值100”基金到2015年2月4日的净值为1.4270元,在不到一年的时间里,上涨了42.7%。“广发中证百度百发策略100指数基金”成立于2014年10月30日,截至2月4日的净值为1.205元,上涨20.5%。
众禄基金研究中心廖帅表示,现在是互联网时代、大数据时代,充分挖掘互联网的海量数据来辅助构建指数以及在此基础上开发指数基金,是对完善当前指数体系以及指数基金体系的一个非常有益的尝试。互联网的龙头企业有着海量数据和非常强的数据挖掘能力,相信未来基于大数据的指数以及指数基金有机会得到更多、更深入的发展,而这,可以使基民在投资指数基金时有更多元的选择。
值得注意的是,大数据基金除了可作为指数型基金这样的被动投资产品,也有成为主动型产品的趋势。
天弘基金日前公布,天弘云端生活优选灵活配置混合型基金获批,为业内首只将大数据技术引入投研的主动管理产品。该基金将通过天弘基金数据研究平台,将大数据技术引入投研模型。
济安金信也在近日宣布与国金通用基金再次合作,推出国金通用——济安通宝1号。在基于研发中证腾安价值100指数的技术模型和系统上,进行调仓频率、权重配置等方面的策略调整和优化升级,设立风险对冲机制和0.85的止损线,从“指数化被动投资策略”升级到“基于指数化和量化交易的主动投资策略”。
本文来源:中国经营报
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28