大数据能量无穷,它将引导未来的商业走向,塑造如今的商业潮流。它决定了2015年,甚至更远的商业趋势。而在市场营销领域,这种力量尤为明显。2015年,大数据将引领以下8种营销趋势:
1、以数据推动内容营销。乍 一看,内容营销与数据并无明显关联,不管是大数据亦或其他数据。但是现在,我们用多种方式发布内容,包括博客、LinkedIn、白皮书或者电子邮件。如 果营销人员能够有效使用数据来分析各种不同内容模式的营销效果,就能更敏锐的洞察到哪些内容能够将潜在客户转化为客户。
2、创造有意义的个性化。个 性化可以是营销人员在发送一封自动推送的邮件时,在邮件开始写上对方的姓名。但我们说的个性化,含义要更宽广、也更有意义。当营销人员可以运用大数据导向 的技术来分析个人特征及其浏览记录来识别潜在客户,并以此为基础在适合的时间以适合的渠道向潜在客户自动发送适合的内容时,大数据才算真正发挥了它的市场 价值。
3、数据整合。公司网站的数据展示出客户的一面,电子邮件数据库则展现了其另一面,而电子商务往来以及财务部门的历史支付信息又从另一个角度诠释了客户的形象。数据导向、客户导向的公司正致力于将这些数据整合,以获得对客户全方位的了解。
4、领悟物联网。思科预计,到2020年全球将有500亿台联网设备,从飞机上的喷气式引擎到您家中的冰箱。数据导向、客户为先的公司将能有效利用这些数据来分析其产品的运行情况,以获取产品的最佳维护时间、及最佳优化方式。
5、开展预测型分析。大 数据在线上线下都可以发挥作用。 Lattice Engines, Mintigo, Infer 和 6Sense都在使用大数据来梳理成百上千条客户属性,以发掘这些客户的共性特征。以Lattice Engines为例,这家公司通过大数据为Juniper Networks找到了其潜在客户是否愿意购买本公司路由器的一个决定性因素——他们是否已经签署了办公地点的租赁协议。如果没有大数据,这样一个非直观 因素是很难被发现的。
6、改善归因。一直以来,营销人员都明白自己的努力能够为公司带来收益。如今不同 的是,我们可以证明这一因果关系。运用Adometry,Convertro,Visual IQ等公司提供的成熟的归因模型,营销人员能够评估他们一系列市场活动的成果,包括展示、邮件、调研以及社交媒体计划,并找出对收益有所贡献的最佳途径。 接着,营销人员可以终止那些收效甚微的市场活动,将更多资源投入到高效盈利的途径上。
7、破解移动营销的密码。LinkedIn 和其他社交网络正在破译一种密码——如何利用大数据在移动端直接面向目标群体进行市场营销活动。数据可以赋予营销人员这样的能力:将可兼容移动端的网页和 邮件提供给来访者。另外,通过移动端进行的支付活动日益频繁,商业活动将产生越来越多的数据可供营销人员参考。
8、培养潜在客户更加容易。即使是在不知道潜在客户电子邮件的情况下,新技术的应用也能使营销人员更好的识别网站访问者,从而通过各种各样的线上渠道进行潜在客户培养。整个过程不必再依赖于电子邮件往来,更加简便有效。
营销人员能够在更多领域接触到各种各样的新技术,并且可以利用移动端、归因理论、内容营销和其他的市场途径,更好的开展市场工作。而连接所有新技术的纽带则 只有一条——数据。毫无疑问,在未来,取得最终胜利的一定是那些能够掌控数据,能更好的理解现有客户和潜在客户的营销人员。
|
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21