热线电话:13121318867

登录
首页精彩阅读典型相关VS潜变量相关_数据分析_大数据
典型相关VS潜变量相关_数据分析_大数据
2014-09-09
收藏

       典型相关VS潜变量相关_数据分析_大数据

关于数据分析中的典型相关和潜变量相关,相信有许多人有各种各样的问题,这里谈谈一些我"数据分析师"的理解。前段时间,看到这样一个案例。案例要求衡量学生的文科成绩与理科成绩之间的相关性。文科成绩包括语文、政治、历史,理科成绩包括数学、物理和化学。那么这道题该怎么做?面对多元相关分析,你"数据分析师"可能会想到两种方法:一种是采用典型相关分析,计算这两组变量间的典型相关系数;另一种是采用结构方程中的潜变量相关,将文科和理科看成是潜变量,将语文、政治、历史看成是文科的测量变量,数学、物理、化学看成是理科的测量变量,然后计算两个潜变量间的相关系数。从理论上看貌似这两种方法都可以,但是计算的结果却可能相差甚远。

       典型相关分析的基本思想是采用类似主成分分析的方法,把多变量与多变量之间的相关转化为两个变量之间相关。首先在每组变量内部找出具有最大相关性的一个线性变量组合,然后再在每组变量内找出第二对线性组合,使其本身具有最大的相关性,并分别与第一对线性组合不相关。如此下去,直到两组变量内各变量之间的相关性被提取完毕为止。有了这些最大相关的线性组合,则讨论两组变量之间的相关,就转化为研究这些线性组合的最大相关,从而减少了研究变量的个数。
       结构方程中的潜变量相关,常用的计算潜变量的方法是主成份。"数据分析师"在实际计算中,如果第一主成份特别大,也就是说只有一个主成份的时候,潜变量相关系数等于第一主成份间的相关系数。如果各个显变量的提取的主成份不只一个,结果就略有不同了。
       其实,典型相关分析和潜变量相关的不同在于,一个依据相关系数最大提取典型变量,一个依据方差最大提取主成分。所以这个两个计算出来的相关系数会有明显的差异。更夸张的是,有些时候这种差异会很大的!很大,明白吗?甚至一个是显著正相关(-0.5以上),一个是显著负相关(-0.5以上)。这个现象不是胡扯,我采用模拟数据时曾经确实出现过。
       典型变量是各指标的线性组合,在这个线性组合中,各个变量的系数可能是正可能是否,加上提取的时候使得相关系数最大,所以典型相关分析的结果往往大于0。而"数据分析师"在计算潜变量相关时,先提取主成分,然后计算主成分之间的相关,所以这个潜变量的相关系数取值范围应该是在【-1,1】。
       需要说明的是,当我们实际面临上述的问题时,可能既不采用典型相关分析,也不采用潜变量相关,而是分别计算语文+政治+历史的总分与数学+物理+化学的总分,用这两个总分代表文科和理科的成绩,直接计算这两个总分间的相关系数。因为这几个成绩在量纲、数量级上都相同,直接相加不仅具有实际意义,而且容易理解,得出的结果也能够更好地解释和反映实际问题。
       最后罗嗦一句,算是对数据分析人员"数据分析师"的忠告:当我们面对一个实际问题时,不应该一味地追求分析方法的高级和复杂,而更应该力求用最简单最合适的方法解决问题。或许,悬乎的方法可以忽悠同事、忽悠领导,甚至忽悠自己,但记住市场相信真像,它绝对不会被任何人忽悠。

数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询