Verint指点迷津:大数据从呼叫中心数据
Hadoop、YARN、全数据分析、数据建模等这些大数据名词纷至沓来时,不由你漠视大数据的趋势。但趋势归趋势,当你着手大数据应用时,从何着手就成为了一个非常现实的问题。
99%被忽视的数据
所谓大数据,让我们抛开其4V的特性,思考一些究竟有哪些数据应该进行分析,很多人将大数据理解为微博、微信等非结构化数据,实际上,很多行业/企业并不拥有这些数据,这些数据通常掌握在互联网厂商手里,对于很多行业/企业来说,基于互联网的应用很多还都是一个尝试性的阶段,对于互联网大数据分析还不是一个急迫的需求。
行业/企业拥有海量数据,这些数据大多是多年积累下来的经营性数据,如财务数据、生产制造、人力资源和办公管理数据等,很多数据属于结构化的数据,在行业/企业的经营管理中,其实非常依仗这些数据,已经得到了很好的分析和利用。对于行业/企业来说,没有得到重视和利用的数据其实并不多。
在行业/企业所拥有的海量数据中,最容易被忽略,也是企业与客户连接最为紧密的数据,实际上是Cal Center数据。据Verint数据分析公司所提供的数据,大部分Call Center能够利用的数据<1%(如图所示),其中,被使用的1%数据也仅限于日常管理,没有能够和企业战略和业务发展产生交集。
大数据分析创造价值
作为企业与用户连接作为紧密的部门,Call Center是企业面向用户交互的窗口,也是企业接触用户的主要途径,因此对于这些交互数据进行分析,很容易掌握用户的需求,为企业调整业务流程,开展新的服务提供决策依据。但在现实应用中,Call Center并没有发挥了解用户需求,指导研发、市场、制造和销售的效果,很多时候,Call Center不过扮演了售后服务,亡羊补牢的角色,最多承担部分线上销售工作,与其应该有的战略角色相去甚远。
“其中有一个重要原因在于Call center数据是音频,很多行业/企业缺少处理音频数据的分析工具。”Verint数据分析公司北亚区售前及售后服务总监汪志伟在接受采访时说。
数据容量巨大,数据类型多样,这是大数据的典型特点,而Call Center数据恰恰符合这样的特点。对于音频、视频等非结构化数据进行分析和处理,很多人很容易想到语音识别、人脸识别等技术,最典型的如iPAD Siri、微软Cortana(小娜)和小冰,无论在识别率,还是人工智能水准上都达到了令人满意的程度。
“但是行业/企业Call Center的数据处理并不是一个简单的语音识别转换,外加数据分析的过程。”汪志伟说。
Verint针对Call center数据分析提供了一整套完整的解决方案。
洞察信息价值
在Verint提供的解决方案中,看似散乱、无序的Call Center数据,其实蕴藏着很大的商业价值,提供对于数据分析归类,就可以将数据区分为忠诚客户、粉丝客户、成功/失败营销、潜在客户、投诉抱怨客户、重复来电和超长通话等类型(如图所示),对这些数据集进行洞察,很容易转变为商业价值。
对语音数据构建索引和聚类,这是一个非常具有技术含量的工作,其水平高低将直接影响到数据分析的使用和效果。
汪志伟表示,Verint数据分析公司的技术优势就在于完整的语音索引和聚类。Verint公司具有20多年的技术和经验积累,可以在几秒之内构建基于文件的索引、分析、查询和相应,提供了简单易用的索引和语音对照播放工具。其提供的语音分析系统,不仅能够自动侦测情绪激动的来电,也能够针对来电内容进行分析。
智能语音分析
完整语意索引和聚类
侦测情绪激动来电
克服建模难题
实际上,智能语音分析的过程不仅是一个全文转录及语义识别的过程,也是一个数据建模和数据分析的过程。在Verint解决方案中,通过设立产品和业务类别列表,就可以对代表每个业务类别的术语进行建模,并可以通过实践不断进行优化,从而也就解决了数据建模的问题(参见下图)。
解决了数据建模问题,接下来就可以对归类数据进行多维度分析。多维度数据分析给行业/企业用户创造了巨大商业价值。根据介绍,某保险公司,借助数据分析发现,可以针对某年龄端用户,提供针对性的保险金融服务。相比较以往,创新险种和服务,需要精算师结合大量的调查和经验,反复验证。如今,大数据分析部分代替了计算师的工作,为保险公司带来的新的工作方式。在电信运营商市场,针对不同客户群的各种套餐和定制服务,其种类之丰富,服务之灵活,很多都是建立在Call Center用户数据分析的基础上。
小结
显而易见,Call Center数据洞察本身就能带来巨大商业价值。除此之外,如果Call Center数据能够与企业ERP、CRM、E-mail、Web以及社交媒体数据进行交叉、稽核分析,用于指导研发、生产、销售等各业务部门的工作,这样在企业内部就可以形成一个完整的闭环,比较大大提高企业的竞争实力。
对于大数据分析支撑系统而言,这就需要其能够支持开放数据接口,对于Verint这样的平台而言,已经具备了这样的分析能力。所以,对于用户而言,当务之急还是能够充分重视Call Center等用户交互数据的价值,通过数据分析,改进企业业务流程,所谓大数据应用落地,不妨从Call Center音频数据开始!很见效,也很简单!尽快行动吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27