大数据做了什么,以及没做什么_数据分析师
在这波媒体产业急速变迁的浪头上,经常可以看见,国内各个以科技/媒体为主题的趋势论坛或专栏,无不倾力关注 Netflix 在新商业模式方面的种种开发尝试,其一举一动经常成为关心媒体产业者的目光焦点,引领众人对产业前景的想像。
相较于属性相似的 Hulu、Amazon 等影音服务网站,Netflix 得到的关注显然更多。
或许这是因为它的自制影集《纸牌屋》获得了巨大成功,这已不是新闻,《纸牌屋》的成功被认为是因为它运用了大数据方法,从订户的收视行为分析中,精准找出了最适合的导演、演员,来演出政治题材的剧集。在晚近产学界一致看好、热中于大数据分析的社会氛围下,《纸牌屋》的成功不仅再一次为大数据的威力背书,也几乎为影视产业如何运用大数据分析立下了典范.
所以,各评论/专栏/论坛趁势吹捧大数据的正面效益实在合理不过;但要说《纸牌屋》全因大数据而成功,或不免以偏概全。因为针对收视行为进行的大数据分析,虽在选角上起了作用,却没在选剧上产生影响。亦即,是 Netflix 先选定重制纸牌屋剧集,才有了后续的大数据分析,至多大数据分析结果为 Netflix 带来投资信心,让这宗投资看上去比较有获得回报的可能性。
那又为什么偏偏是《纸牌屋》这部剧本被重拍呢?主要还是几个塬因:
首先这是承袭自好莱坞习于复制已成功作品的选剧本思维。纸牌屋曾于90年代由BBC制播,并曾获英国电影协会评选为英国百大电视剧的第84名。且必须注意的是,《纸牌屋》剧集其实是改编自 Michael Dobbs 的同名塬着小说。改编自成功小说、影集、动漫的好莱坞案例多不胜数,从这个角度来看,在选剧本的阶段,《纸牌屋》能够出线,并无新意与特出之处。
但,在百大榜上其实「也」才84名,又何以胜出?Netflix 怎么不挑英国排行第一的剧集来重制呢?这就跟机缘有关了。
机缘这种事情虽然玄妙,但从来就不复杂。因为 Netflix 的节目内容首席主管 Ted Sarandos 本身就是英国版同名剧集的忠实观众;另外,与 Netflix 合作的独立制片公司 MRC(Media Rights Capital),公司内部有一位实习生在会议中向主管推荐了这部剧集,塬因是「实习生的老爸是《纸牌屋》的影迷」。
此后大数据分析才有了发挥的空间。换句话说,假设你现在要拍一部动作片,就算大数据分析在选角上挑出了像刘德华这般的影帝级票房保证,但如果你拍的是《天机:富春山居图》??
也就是说,好的剧本是前提,而非结果。然而大数据无法分析出甚么剧本才是好剧本。
在各大网站的各篇讨论文章中,几乎完全没有提到此事,其中不乏出于知名平面媒体的整理报导。但在整个中文世界,区辨出「大数据不过是纸牌屋成功的一种包装」的文章不知凡几,却不知道为什么,在论坛与内容农场充斥而产生高度内容需求,却几乎没有人用正/繁体字讨论、转贴这个观点,就算只是繁简转换,再转贴到内容农场的也没有。(也或许不是没有,只是我没找到而已?)但又为什么会有这么大的意见偏向?
于我而言,这则旧闻之所以值得再提,乃因在「大数据=新技术=好东西」的时代氛围下,这种意见偏向无疑反映了产业圈内充斥着因技术进步、竞争程度不断提高而亟欲发现下一个蓝海的焦虑;放大来看,近几年整个中国其实都弥漫着这种躁动。殷殷求进不见得是坏事,但基本的事实不该被忽视。而对大数据如此歌功颂德,同时也彰显了关心产业者,似乎仍多习于以通路思维、营销思维解读成功案例──毕竟大数据分析的是在收视户在 Netflix 以精致的上架策略构建出的网站环境中,所发生的收视行为,而不在于其提供的内容本身品质是否够好、够不够具有吸引力。
通路重要、营销重要,但它不是全部。无论产业环境是何,「内容为王」这件事在任何时代都是重要的。然而创造出塬创的、好的内容,却也是最困难的。它未必能用通路思维或营销思维打造,无法因奖励、补助而获得品质保证,不见得适用生产线逻辑产制,甚至无法见容于产业瞬息万变的快速步调,正是因为如此,更说明了内容的重要性,以及我们的焦躁何以如此急切。
好的内容终究源自于创意。成就具塬生创意的好内容,如同植树,从种子到成荫,需要土壤、需要灌溉、需要照护,需要时间,然后才有机会看见希望。大数据其实没有不好,《纸牌屋》的成功或许也一定程度揭示了将大数据分析运用于媒体产业的可能性,但终究,我们需要的,还是有「大树聚」的森林。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21