看清大数据:是工具而非万能钥匙_数据分析师
当前大数据的概念几乎众所周知,“海量”似乎成了形容大数据的唯一词汇。
大数据之所以大,其中一个重要原因是,实体经济在互联网时代开始转型的过程中,一直在进行着数据的搬运工作——将线下业务中的数据一点一点的挪到线上。这种借助互联网形式的转型,从而在线上积累了大量的数据,进而形成了大体量的数据库。
一种观点认为,企业借助海量的数据形式就能产生大量的盈利,因为数据中包含着客户的消费需求、消费习惯、价值导向等诸多因素,而这些都可以借助数据的形式分析出来。企业依靠数据分析出来的结果,能够对市场进行精准的定位。海量的数据体量越大,企业对市场的定位越准,对企业而言,其制定满足市场需求的目标就会越清晰。所以在某种程度上,数据似乎成为了企业在互联网时代获得盈利的唯一法宝。
另外,借助海量的数据形式,通过分析,行业的流程化、新产业链的重构等形态都会较好的呈现出来,也便于企业寻找到新的利润空间,从而让企业深度掘金。
于是大数据似乎成了新时代背景下企业要想盈利便绕不开的贵人。
但是我们应该认识到,互联网只是一个时代进行到一定历史阶段出现的产物,转型倒逼传统企业寻找新的利润空间,这是电气时代、信息时代都会发生的事情,非常正常。
大数据在当前时代契合了互联网的本质属性,因为二者都是虚拟的,这也是时代发展到当前必然出现的现象。但是,企业若将转型的精力全部放在大数据的应用上,而无视其它盈利模式,在某种程度上反而得不偿失。
一方面,企业借助互联网产生盈利,这是新时期背景下企业的盈利模式。因为实体经济的萎靡不振,线下的道路几被堵死,在这种情况下,传统企业只能在线上寻找新的赢利空间。这种转向并不是企业在赶时髦,而实在是出于无奈。
另一方面,市场电商化过程中沉淀了大量数据,较好的适应了产业链的重构,于是很多具有轻资产性质的公司较早的进入了线上产业重构的时代浪潮中,并成为在大数据产生之前最早盈利的弄潮儿。大数据的产生无形之中又推动了这批弄潮儿向着更加广阔的盈利空间迈进,并产生新的盈利。由此,传统的企业在转型的过程中,眼睛里几乎被这些盈利的弄潮儿占据了,因此造成了一种假象:所有搞大数据的企业都是盈利的。被拍死在这波浪潮中的企业直接被无视掉了。
其实,现在线上的所谓大数据,体量还是极小的,真正大体量的数据还未被挖掘出来,或者说还没有被共享出来。目前,大体量的数据绝大部分仍旧存储在制造业、政府、传媒或银行中等待唤醒。目前市场上的数据处理软件在应对已经被释放出来的数据时,已经显得力不从心。相关的数据挖掘技术、数据智能处理技术、数据动态追踪手段尚需完备。
数据真正能为企业带来多大的效用,能否帮助企业在转型的过程中获得盈利,这也是众多的企业不得不面对的问题。在这种情况下,沉睡的更大体量的数据固然包含着更多对企业有效的信息,但是如何识别这样的有效信息,进而为企业盈利添柴加火,就更加难以确定了。
所以,传统企业一定要慎重对待当前互联网时代的所谓大数据概念,它不是企业转型的万能钥匙,更不是盈利的唯一手段。其作用,仅仅是时代转型过程中出现的一种工具,仅此而已。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21