大数据时代的预测艺术_数据分析师培训
千呼万唤,纳特西尔弗的新书《信号和噪声》终于要在中国上市了。西尔弗的这本书不仅是他之前预测经验的全方位总结,也同时在探索其他领域预测的可行性,比如本书的开篇几章讲的试图还原诸如2008年金融危机、天气预报以及地震等一些失败的预测,这虽然让人觉得有些马后炮的感觉,但西尔弗显然是在为他的理论造势,或者说是在铺垫。所有这些失败都指向一个问题:为什么在这个海量信息的大数据时代,预测还是不可避免的失败?
纳特西尔弗 统计学家、作家和政治网站538.com的创始人。2008年美国大选期间他成功预测出49个州的选举结果,2012年大选期间更是成功预测出全部50个州的选举结果,被称为“神奇小子”。2009年,《时代》周刊将他评选为全球100位最具影响力的人物之一。
由于工作关系,之前不少在美国同行的文章里看到对纳特西尔弗的评价,都对其在数据模型与预测方面的才能赞不绝口。
他也的确是个很有故事的人。从小酷爱数据的他,大学毕业后去毕马威工作四年,期间开始研究网络扑克,随后辞职专心玩网络扑克。再然后他开始研发一套可预测棒球的数据模型,2008年西尔弗利用这套起源于棒球的数据模型几乎成功预测了美国大选结果,当时他在全美50个州选举中,成功预测了49个州的结果。这也使他名声大噪。2012年,西尔弗再上一个台阶,成功预测了美国50个州的大选结果。
互联网对预测与决策的颠覆
我想起最近听到的一些故事,今年微信很火,遇到朋友时免不了要谈谈微信对他们工作的影响。一位身居部门经理职位的朋友A抱怨,从前是部门员工向他们汇报工作,但在公司开通微信群之后,老板、各部门经理以及员工都在这个群里,公司老板对员工的投诉建议非常清楚,这使得这位朋友感到很焦虑,因为他将失去之前信息中介的地位。而另一个朋友B的看法则有所不同,他是一位底层员工,他们公司也开通了微信群,每天大家都在群里讨论公司的事情,有时他们反映的问题马上就得到老板的回应,并迅速解决,于是这位朋友感到微信让公司的决策更加积极和主动。
这件事和预测又有什么关系?从某种意义上说,企业的决策就是对未来的一项预测。企业决策者们通常情况下是站在一种全局的角度去看问题,{CDA数据分析师培训}这得益于传统的企业中心化组织架构,也就是说,企业不同部门分属不同的负责人管理,不同部门的意见和反馈先集中到各自部门领导那里,再通过部门领导反馈给企业老板。这是一种类似于“烟囱式”的汇报结构,于是,摆在CEO或总裁桌上的报告都是经过提炼的数字和问题,决策者们在此基础上做出对企业发展方向的预测。
互联网或微信就彻底颠覆了这一模式。公司所有人都在一个微信群里,任何一个员工反映的问题都会被CEO注意到,公司老板和员工几乎会在同一时间遇到一个问题。诚然,这为公司老板了解基层情况提供了一个非常好的渠道,然而其副作用是,倘若决策者没有全局观,面对一切没有过滤的信息,他还能做出像之前处理来自副总或部门领导精心提取的数据那样处理信息吗?
成功预测的三大准则
尽管去中心化的口号很美好,但现实却很残酷。很多事实也为大数据时代的失败预测提供了某种注脚。在西尔弗的书里,用七章的篇幅,从失败的预测里提炼出三条准则:
首先,必须要有足够的信息,这是一切预测的大前提。如何在预测之前收集足够多的信息就成了预测成功与否的标准,早些年,天气预报一直被人诟病其不够精确,很大程度上还是因为信息太少,导致预测时出现种种偏差。
其次,预测需要一个适当的方法或模型,用来处理第一阶段里收集到的大量信息。
2008年美国金融危机前,就有大量经济学家以及评级机构将信息进行处理后发现,房地产泡沫的危险系数非常高,然而他们因种种原因放过这个结论,如该书里所言:“他们只是不想让“音乐”停下来罢了”,于是就有了这第三个要素:以客观理性的态度对待这些信息以及经过处理后所呈现的数据,譬如在深蓝与卡斯帕罗夫对决中,深蓝就完美诠释了什么是客观与理性,相比而言,卡斯帕罗夫就稍逊一筹,当然你要知道,深蓝只是一台机器。
本书的前7章,涉及政治、经济(金融)、棒球、天气、地震、流行病等多个领域,知识领域跨度之大还是让我们看到了读者的严谨和认真,但本书的精华部分其实是在后半部分。在第八章里,作者抛出了自己预测理论的基础——贝叶斯定理。贝叶斯定理是英国数学家托马斯贝叶斯1763年提出的一个理论,希望通过某种数学的手段,对一件事情发生的可能性进行预测,他也成功地做到了这一点,其定理的核心就是通过已知情况对未知进行预测,而且,相关情况的概率越大,就越有可能预测成功,这和上文提到的三要素有异曲同工之妙。贝叶斯定理如今在投资学中运用得非常广泛,而互联网的很多技术也依赖于贝叶斯定理。
预测的困难性:极客们并不能完全取代球探
尽管贝叶斯定理在预测方面已有非常高的成功率,但作者还是反复强调预测的困难性。我们也可通过成功预测三要素理解作者这样说的原因,你如何保证收集信息的准确性?你如何构建合适的数学模型和工具?你又如何克服预测过程中的私人因素?即使前两个条件都具备,人类自身能摆脱预测中的主观成分吗?这种困难在卡斯帕罗夫对阵深蓝时尤为明显,早在1996年卡氏就曾与深蓝有过交手,当时卡氏以4比2胜出,但这条新闻并未引起多大反响。一年后,改进版的深蓝终于3.5:2.5打败了卡氏。卡斯帕罗夫曾回忆当时他的头脑非常混乱,完全不想比赛。而对手——深蓝,依然保持最冷静的“心态”。无怪乎有媒体赛后称深蓝并没有赢得比赛,而是卡斯帕罗夫输掉了比赛。
在NBA历史上,林书豪或许是球探们最失败的预测之一,当年被八家球队拒绝,好容易进入纽约尼克斯,在默默无闻中开始他的职业生涯,直到某天他才迎来人生第一个机会,并一举成名,这也再次佐证了作者的无奈,的确“统计学使让球运动发生了革命,但计算机极客们并不能完全取代球探。”但如今,这些球探们真的很需要计算机来帮助他们做出预测。
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22