Hortonworks业绩不及预期:大数据泡沫论再起
一半是海水,一半是火焰。
当多个网站依靠大数据精准预测出第87届奥斯卡各重头奖项的同时,大数据生态圈中堪称代表的Hortonworks却报出了一份令资本市场摇头的财报。
2月24日,Hortonworks披露了其上市以来的首份季度财务报告,其2014年第四季度的总营收为1270万美元,低于华尔街分析师预期的平均值1342万美元。同时,其每股净亏损为2.19美元,高于分析师预期的2.04美元。Hortonworks该季度基于GAAP会计准则的运营亏损达9060万美元。
Hortonworks被认为是大数据核心技术之一Hadoop市场的三驾马车之一,这份低于预期的财报,再次引发了业界有关大数据是否面临泡沫的讨论。
Hadoop仍是小众市场
大数据应用的源起可以追溯到Google在2004年前后发布的三篇论文——MapReduce、Bigtable、GFS。在此基础上搭建的开源平台Hadoop,堪称全球大数据生态圈中最为核心的技术之一。
然而,由非营利组织管理的Hadoop平台,尽管推行开源模式,但企业并不是拿来就可以用,它需要经过进一步的加工和修缮,由此孕育了多家大数据商业开发公司,如Cloudera、MapR、Hortonworks等。这些公司的商业模式就是开发商业化的Hadoop分发版,并对外销售。Cloudera、MapR、Hortonworks由此也被称为Hadoop市场的三驾马车。
在上述“三驾马车”中,Hortonworks于去年11月10日提交招股说明书,并在去年12月12日实现IPO,以每股16美元的价格发行了625万股股票,募集约1亿美元资金。
Hortonworks刚刚发布的这份季报,给业界又出了一个讨论题,即:Hadoop正处于一个快速增长市场的早期阶段,还是一个大数据泡沫的最后破灭期?
根据咨询机构Wikibon在2014年进行的一项调查,被调查者中仅有36%正在使用Hadoop,而其中又有64%只是将其用于概念测试环境下。Wikibon还发现,那些部署Hadoop的机构中,仅有25%是付费用户,而有51%是基于Hadoop的开源版本自行开发,还有24%的用户则是使用Cloudera、MapR、Hortonworks等Hadoop开发商推出的免费版本。
这意味着,至少从目前来看,Hadoop仍然是一个小众市场,尤其付费用户的基础还很薄弱。
另外一个支持泡沫论的论据则是“Hadoop过时了”。众所周知,Hadoop的基础是Google在2004年前后发布的三篇论文,但有人质疑,目前的Hadoop“太2004了”。
持这种观点的人认为,Google在2004年发明了MapReduce来支持其搜索引擎中的网络爬虫,但几年以前Google已将MapReduce替换为BigTable,后者是一种更具互动功能的存储系统。也就是说,Hadoop社区在Google转移到更新平台的五年之后开展起来,而跟随Google进入Hadoop的企业将由此整整落后十年。
Cloudera宣称营收过亿
不过,Hortonworks坚持认为,营收并不是当下最重要的事情,事实上,其在去年11月发布招股说明书的时候,就对分析师表示,能更准确反映其业主状态的是总营业额,这是因为其在提供服务后并不总是能得到及时支付。
从营业额的角度来看,Hortonworks去年第四季度的数字是3190万美元,同比增长148%,其整个财年的营业额为8710万美元,同比增长134%。
目前,Hortonworks有332家付费客户,单是去年四季度就增加了99个新客户。
这些数字可以解读出来的故事则是,Hadoop市场目前仍处于快速增长之中,而为了构建一个可持续的业务,类似Hortonworks这样的Hadoop开发商需要在先期进行大量投资,同时需要构建销售渠道。
咨询机构Cowen and Co的分析师Jesse Hulsing也表示,Hadoop市场仍在早期阶段。其认为,到2020年,大多数员工规模超过5000人的大企业都将采用Hadoop。
对于Hortonworks目前的这份财报,还有一种解读就是,与其说是Hadoop市场本身的原因,不如说是其自身在市场竞争中的因素。
就在Hortonworks披露业绩的前夕,另一家Hadoop服务提供商Cloudera则公开宣布其2014年营收“超过1亿美元”。Cloudera由分别来自Facebook、谷歌、雅虎和甲骨文的四位创始人于2008年成立。一项数据显示,75%的Hadoop新用户使用的都是Cloudera的分发版。目前,Cloudera还是未上市公司。Cloudera公司创始人、董事长兼首席战略官Mike Olson表示,公司尚无IPO的时间表。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20