深度学习算法的几个难点_数据分析师培训
1、局部最优问题。
深度学习算法的目标函数,几乎全都是非凸的。而目前寻找最优解的方法,都是基于梯度下降的。稍微有点背景知识的人都知道,梯度下降方法是解决不了非凸问题的。因此,如果找到最优解,将是深度学习领域,非常值得研究的课题。
andrew在google的工作,也就是那只猫,其实训练过程是让人很费解的。为了缩短训练时间,项目组采用了分布式训练的方式。采用了1000台计算机,在不同的计算机上存储不同的训练数据,不同的训练服务器通过参数服务器进行参数的交换。{CDA数据分析师培训}训练过程开始后,所有的训练计算机从参数服务器更新当前参数,然后利用当前参数以及本机器上的训练数据,计算得到当前的梯度,通过贪婪式方法,训练到不能再训练为止,然后将参数的更新量提交给服务器,再获取新的参数进行更新。
在这个过程中,出现了不同机器在同步时间上的一个大问题。具体阐述如下:梯度下降这种方法,在计算梯度的时候,一定要知道当前参数的具体值,梯度是针对某一个具体的参数值才有意义的。但是,由于在这个系统中,计算机非常多,当计算机A从服务器上获得参数值后,完成梯度的计算得到步进量的时候,可能在它提交结果之前,计算机B已经修改了参数服务器上的参数了。也就是说,A所得到的步进量,并不是针对当前的参数值的。
论文中,作者注意到了这个问题,但是故意不去理会,结果训练结果居然不错。作者的解释是:这是一种歪打正着的现象。
为什么能够歪打正着呢?有可能是这样的:非凸问题,本来就不是梯度下降法能够解决的。如果不存在同步难题,那么随着训练的深入,结果肯定会收敛到某一个局部最优解上面去。而现在这种同步问题,恰好能够有助于跳出局部最优解。因此最终的训练结果还算不错。
作者并没有证明,这种方式,对于寻找全局最优一定是有帮助的。对于最终的结果是否一定是经验最优的,也没有证明。因此我感觉,深度学习里面,这种超高维参数的最优结果的寻优,是一个很值得深入研究的问题。它对于最终的效果也确实影响很大。
2、内存消耗巨大,计算复杂。
内存消耗巨大和计算复杂体现在两个方面。(1)训练过程。(2)检测过程。
这两个过程的计算复杂,根本原因都是庞大的参数规模造成的。比如google的这个项目,每一个位置都用到了8个模版,每一个像素,这8个模版都是不同的,因此导致最后的模版总数很大,所以训练和检测都很慢。当然,这种模版的设计法,让人不好理解,为什么不同的像素位置,模版完全不同。我还是支持以前的卷积神经网络里面的思想,不同位置的模版都是一样的,但没一个位置,模版数量就远不止8个了。这样的好处是,内存空间中,总的模板数下降了;但缺点是,计算更复杂了。
因此,如果能够找到一个好的方法,能够有效的较低计算复杂度,将是很有意义的。(比如某个邻域内如果方差极小,其实根本就没必要计算了,直接赋0.)
3、人脑机理还有很多没用上。
深度学习模拟的是人脑的其中一个很小的方面,就是:深度结构,以及稀疏性。
但事实上,人脑是相当复杂滴。关于视觉注意机制、多分辨率特性、联想、心理暗示等功能,目前根本就没有太多的模拟。所以神经解剖学对于人工智能的影响应该是蛮大的。将来要想掀起机器智能的另一个研究高潮,估计还得继续借鉴神经解剖学。
4、人为设计模版的可行性。
一直在想,为什么第一层用于检测角点和边缘这种简单特征的模版,一定需要通过无监督训练得到,如果人为实现模拟的话,能否也得到较为理想的结果呢?
从神经解剖学的成果上来看,人脑的v1区和v2区,神经细胞确实是按照规律排列的。而且都是可以人为设计的。而且,一个让人怀疑的地方就是,v1区和v2区的神经细胞,是先天发育好的,还是后天训练出来的?如果是先天的,那就是说,这种模版是可以人为设计的。
5、代价函数的设计方法。
代价函数的设计,在初学者看来,是很奇怪的。代价函数的设计,直接影响到最终的模版训练结果,可以说是深度学习中最核心的模块。
从目前已经发表的论文来看,一是考虑重构误差,二是加入某种惩罚项。惩罚项的设计有多种模式,有考虑一阶范式的,有考虑二阶范式的,各种设计可谓千奇百怪。有博文上讲到,惩罚项的作用是为了防止过拟合,但也有博文的观点是,惩罚项是为了保证稀疏性。(感觉过拟合与稀疏性是否存在某种内在联系。)
当然,代价函数的设计方法,目前还在不断探索,感觉这是一个可以发论文的点。
6、整个神经网络系统的设计。
神经网络的设计方法,包含了研究人员对人脑的理解方式。CNN、RBM,以及andrew项目组设计的变态网络,都各有各的特色。要把整个网络框架设计好,还是比较需要经验的,也是相当费脑力的。当然,这是整个领域最有研究价值的模块。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31