迎接大数据时代,你的存储准备好了吗
大数据时代,让人们意识到数据的重要性。对于企业来说,数据关系到企业的发展,甚至直接影响到公司的成败。这也促使了越来越多的企业开始重视存储。
存储涉及的服务器中
对于存储系统来说,随着企业业务的增加,或者业务形式的变化,对存储性能的要求可能会更强。但近些年,CPU、内存等都在快速的进步,而存储的进步却非常有限。如何提高存储系统的性能呢?将闪存应用到服务器中也许是一个非常适合的方式。能够大幅提升存储性能,并且也减少了设备扩展成本。
2.长期存储采用大批量磁带
正如大型机会和数据中心一样,虽然一直被预测被取代,但是一直活得挺好。磁带存储也跟他们一样,虽然关于磁带被磁盘取代的论调一直存在,但是磁带却一直活得很好。而且随着大数据时代的来临,越来越多的数据存储需求以及备份需求对磁带的需求越来越高。
磁带存储的需求比以往更高,而且其性价比要远远高于磁盘,其将是重要的数据备份的工具,长期的数据备份将更加突出磁带的价值。企业需要利用大批量的磁带来缩减存储系统的成本。
3.更多分层
通过存储的分层,来满足不同业务的需求是目前很多企业都在采用的技术,利用分层技术,将对性能需要较高的业务运行在SSD方面,将或者业务对性能需求较低的业务运行在磁盘上。分层技术让企业的存储系统能够物尽其用,让投入发挥到最大值。
4.购买服务器而不是存储阵列
存储阵列以及在存储业务方面发挥了多年的作用,因为他们拥有大量的存储空间。[大数据魔方]但是随着服务器变得越来越强大,其能够存储的数据也越来越多,利用服务器搭建存储SAN或超融合的虚拟SAN是目前的一个发展趋势。这导致了存储阵列的市场份额被服务器挤掉了一部分。
随着软件的发展,虚拟SAN软件可以很容易的运行在服务器中,所以企业在搭建自己业务平台的时候,需要考虑购买的是服务器还是存储阵列。
5.跳到云平台
在云计算发展之初,很多企业出于安全等方面的考虑,并没有将企业的业务放到云平台方面。渐渐的,私有云开始在企业中流行,他的便利以及系统内的安全性被认可,是的其有了快速的发展。
然而,在2015年,私有云将迎来挑战,那就是快速发展的公有云,这些公有云正以快速的发展方式改变了人们的观念。随着谷歌、亚马逊、微软等公有云平台的成熟,越来越的企业将会把自己的业务平台移动办公到云,这将是一个省时省力的好方式。
6.DR即服务
灾难恢复(DR)对于数据存储来说是非常重要的,建立一套完善的IT系统需要完美的灾难恢复系统来支撑,在如今,各种人为、自然的灾害让很多IT系统失去了价值,DR则能够为这些系统恢复到当初的状态,所以完善的存储系统同样需要灾难恢复机制。特别是对于中端用户来说,这个是格外重要的。
小结:大数据时代已经到来,数据将会在未来发挥着越来越重要的作用,{}所以存储系统也将会越来越重要。对于企业用户来说,数据拥有着巨大的魅力,保护好存储将是他们必须要重视的事情,存储系统的改变、完善都需要时刻紧盯。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21