面对大数据应用的六大注意事项_数据分析师培训
我们都知道,现在谈论的大数据,其最显著的特征之一就是“大”,这简单一个“大”字,就使得企业在面对大数据的时候开始不得不采用分布式的计算方式,还有一系列化繁为简的计算方法。
在处理大规模信息的时候,大数据的很多应用程序出于对于弹性应用的考虑,需要将数据复制到很多个不同的位置当中,从而信息量开始变得越来越大,甚至是呈指数倍的增长。
大数据的最重要属性并不在于它的规模,而在于它将大作业分割成许多小作业的能力,它能够将处理一个任务的资源分散到多个位置变为并行处理。当我们面对大数据应用以及分布式架构应用的时候,需要注意哪些问题呢?
一、大数据应用程序在弹性网络当中的作用
我们知道,如果一组分布式计算资源需要通过互联网进行串通和协调时,其应用的可用性就变得非常重要了,一旦其中的网络通讯环节出现问题,那么对于数据计算结果将会导致难以想象的灾难。
其实对于现在的很多大数据应用来说,大部分的网络架构安全性和稳定性还是很高的,当然,网络和数据资源当中的故障是不可避免的,虽然网络的高度可用性也很重要,但是想要设计完美可用性是不可能的。
对于企业的架构师们来说,弹性网络的解决方案是非常有效的解决方式之一,网络的弹性取决于路径多样性和故障转移两大类。除了传统的平均故障时间间隔方法,大数据网络的真正设计标准一定要包含这些特性。
二、大数据的“拥堵”问题
众所周知,之所以称之为大数据技术,数据量的庞大是一定的,然而,对于大数据应用程序来说,不仅仅是规模大,对于数据的突发情况也是让现在很多企业很头疼的。
在高流量时间段里,拥塞是一个严重的问题。然而,拥塞可能引起更多的队列延迟时间和丢包率。此外,拥塞还可能触发重转,这可能让本身负载繁重的网络无法承受。
网络架构设计时应该尽可能减少拥塞点。按照可用性的设计标准,减少拥塞要求网络具有较高的路径多样性,这样才能允许网络将流量分散到大量不同的路径上。
三、网络一致性比延迟更重要?
这是一位业内资深专家的看法,他指出,对于大部分大数据的应用程序来说,网络延迟其实并不算什么大事,如果计算时间的数量级为几秒钟或几分钟,那么即使网络上出现较大延迟也是无所谓的。
但是,大数据应用一般都需要有较高的数据同步性,这种特性对于大数据服务的体验来说是非常重要的,因为它意味着作业是并行执行的,而各个作业之间较大的性能差异可能会引发应用程序的故障。
四、未雨绸缪,数据未来的伸缩性
我们先来看一组数字,许多人都知道雅虎在其大数据环境中运行着超过42000个节点,但是根据Hadoop Wizard的数据,2013年大数据集群的平均节点数量只有100个。
也就是说,其中的每一台服务器即使配置了双重冗余的话,那么支持整个集群也只需要4个接入交换机,可伸缩性并不在于现在集群现在有多大规模,而是说如何平衡地扩展支持未来的部署规模。
如果基础架构设计现在只适合小规模部署,那么这个架构将如何随着节点数量的增加而不断进化,可伸缩性并不在于绝对规模,而是更关注于实现足够规模解决方案的路径。
五、通过网络分割处理数据
网络分割技术是构成大数据环境的重要组成部分,简单来说,网络分割技术可能意味着用户需要将大量的数据和网络流量进行分离,这样做的好处就是可以避免因为突发而产生的流量影响一些关键业务的正常运行。
此外,用户还需要处理运行多个作业的多个租户,以满足性能、合规性或审计的要求。[CDA数据分析师培训的]这些工作要求在一些场合中实现网络负载的逻辑分离,一些场合则还要实现它们的物理分离。
六、一切都离不开应用感知能力
大数据现在已经成为了集群环境的标志性词语之一,通过不同应用的不同需求,很多数据对于应用的敏感性方面要求开始不断提升,说白了就是一个网络要支持多应用程序和多租户,它就必须要能够区分自己的工作负载,并且要能够正确处理各个工作负载,这点其实是很困难的。
应用程序的良好体验是由多方面因素组成的,网络阻塞情况、网络可扩展性、大数据应用技巧等等很多方面,用户对于这些应用和技巧的需求和前瞻选择也是提升大数据体验的重要指标之一。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31