京东、阿里:打口水战不如共同推动数据开放
京东、阿里真是一对冤家。恍惚前几天小马哥刚刚道歉,平息了一段口水仗,昨儿又看到京东发文批评子沛。文采不错,争论的焦点好像是阿里要做国家企业,京东甘愿做国民企业,“国家企业”与“国民企业”道不同、术亦不同,所以如何如何?这两家企业都是我很尊重的新兴经济的代表,他们也是应用大数据技术、建立产业生态的急先锋。子沛和我也是好朋友。子沛在写作《大数据》时候,我正在忙着写大数据的深度研究报告。还是看到《大数据》热卖,最终促使我写作《大数据时代的历史机遇》。从名字上看,子沛的《大数据》、舍恩伯格的《大数据时代》、我的《大数据时代的历史机遇》看起来就像大数据三部曲。后来我去美国,还是子沛热情邀约,参加了一次旅美华人科技协会的会议。我在京东也有不少朋友,而且每次我作产业生态或者大数据的报告时,多用京东为例。所以,我打算和和稀泥,朋友们互相吵架有什么意思呢,大数据领域,有太多的事情,等着两家去做呐?
如标题所说,能不能一起干点推动数据开放的大事儿呐?在开源软件的历史上,谷歌公司的贡献,是无以伦比的。目前大数据的处理技术,像hadoop,mapreduce等开源软件,很大程度上受惠于谷歌公司的卓越实践。谷歌在创业初期,买不起IBM、HP比较贵的服务器,只好买一些二手的服务器,装上开源的linux操作系统,来支持其快速增长的搜索业务。二手服务器,总是喜欢出点故障,谷歌又自己动手,开发自己的文件管理系统,把数据分散存储在不同的服务器上,一台坏了没关系,还有其他服务器可用。不小心,谷歌一下子开发出来大名鼎鼎的GFS,解决了分布式存储和跨主机并行访问的难题。为其霸业奠定了基础。谷歌贡献在于它很快就把这些技术,分阶段开源出来,反馈到开源社区。狭义的大数据产业发展,如果没有早期像谷歌这样的公司的无偿贡献,很难获得行业性的爆发增长的。 但是谷歌开放的道路上,并非毫无保留。谷歌可以把广受欢迎的手机操作系统安卓开源,也可以把非常好用的诸多应用软件免费,但是, 谷歌绝不开放数据。 谷歌不择手段的获取各种数据,存储在其硕大无朋的多个数据中心里。它视数据为其核心资产,绝不容第三方染指。计算机刚刚发明的年代,是不区分所谓硬件和软件的。大家不觉得拷贝别人的软件拿来用用,有什么不可?后来比尔·盖茨一声断喝,随便拷贝别人软件是小偷,从此开创了独立的软件行业。软件也挣脱了硬件的束缚,独立成一个产业。
盖茨时代,软件和数据其实也是混在一起的,难以分割。数据总需要软件来识别和处理,离开特定的软件,数据就是一堆毫无意义的二进制组合。 现在 慢慢观察到数据独立存在的一些现象。 只要有独特的数据资产,总有人愿意开发软件研究算法,来发掘这些数据资产的价值。 数据如山,独自巍峨。软件如镐,山中掘金。谷歌通过开放软件的源代码,颠覆了微软卖软件谋生的商业模式,短短15年,市值超越微软,成为行业翘楚。但是现在谷歌开始雪藏数据,把数据圈起来,视为自家私产。 从商业模式来讲,谷歌的模式堪称完美。 比印钞机还要高效,每天净收入1亿美元,没有应收账款,都是现金流。谷歌盈利的奥秘就是收集、分析大量的数据,更精准的预测个人的需求,做更精准的广告。谷歌收得是广告费。但是随着谷歌数据维度的增加、数据量的增加,谷歌所拥有的数据,具备了广泛的社会意义。譬如谷歌根据其大众的搜索关键词,预测流行病爆发的可能性等等。继续数据如山的比喻,谷歌数据矿山中蕴藏丰富的金、银、铜、铁、锡……但是谷歌光靠挖铜就赚得盆满钵溢。社会视如金的东东,与谷歌而言却形同矿渣。 事实上,因为大数据蕴涵价值的多样性,单独靠谷歌一家,是不能穷尽数据的巨大社会价值、与经济价值的。 所以,谷歌坐拥宝库,但仅仅卖卖广告赚钱,其他的只是秀一秀。行文至此,我决定放弃“数据就是资产”这个概念,转而关注大数据的社会属性,开始倡导“数据就是资源”。我有资格这么做,因为“数据资产”的概念,是我在2011年12月07日,发布的第一篇大数据公开报告《大数据时代即将到来》中提出的,并由此推演出多个商业模式。现在我宣布这个概念成为历史。因为它关注的焦点是,一家企业如何利用数据来盈利。
数据就是资源,则强调大数据的社会属性、行业属性。对于推动数据开放、推动产业融合、推动经济增长、构建新型商业文明有着巨大的现实意义。 从数据资源角度而言,谁能颠覆谷歌,为新型商业文明开辟道路呢?我想,唯有打破数据资产的概念,把它看成社会共有的资源,开放出去,形成社会性、行业性的数据基础设施,在此之上,形成百舸争流、万马奔腾的数据应用大格局,才可以说我们真正进入了数字文明。而那家扮演数据基础设施提供商的公司,就是新时代的谷歌。 也许后人在撰写这段商业史的时候,会如是下笔:“XXX公司,宣布数据开放,以此为发端,人类真正迈入了数字文明时代!” 历史在翻页,我们有幸站在数字文明时代的入口处。阿里、京东无疑是开启数字文明大门的强势候选人,但是谁能开启这扇门,成为真正划时代的企业呢?且拭目以待吧!
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20