大数据非万能,游戏营销得阴阳迭运
好吧,柴静在鲜有的情感克制下,做出了雾霾纪录片《穹顶之下》,火爆后,却硬生生被解读出各种营销的鸡汤味,撺掇出阵阵假高潮……不得不说这是个“被鸡汤”的年代。
而在营销领域,扮演类似角色的便是“大数据”,近两年,许多用惯了大波妹、“老婆不在家才能玩”等噱头的游戏商家们也视大数据为玩转营销的万灵丹,但显然,它也沦为了看过去高大上的噱头。
就在春节前,曾因Facebook而名声大震的Zynga悄悄关闭了中国分公司。似乎,国内71名员工每年700万美元的花销,也成了大洋彼岸负担。如今,这家上市游戏公司的市值从最高70亿美元跌落到25亿美元,日活跃用户数从2013年二季度的3900万滑至2014年四季度的2500万……
早几年,也是这家公司,声称将“功能开发15%”的游戏直接撂到线上,以数据分析来改进,就能轻易成功;而在营销手段上更要完全仰赖数据……可惜,它忘记社会有多复杂,营销就有多复杂,简单的大数据定量分析,会让人做出看似科学实则轻率的决策……结果,便落到如今这般田地。
再仔细回味近年来的游戏圈,参与者们往往因“爆品”一炮而红,之后,便拿手中积累的数据“说事”,一味的模仿、换皮,营销洗用户,到头来,则不断演绎《桃花扇》中“眼看他起朱楼,眼看他宴宾客,眼看他楼塌了”的悲剧。
的确,游戏营销就是要打动人心,这是一件比卖货难上百倍的事情,打动一次可以,想总能打动,除非是心脏起搏器。
纵观行业,小郝子发现,倒是数据资源丰富的腾讯鲜少提及大数据,而腾讯游戏无论在端游时代还是手游时代,都duang、duang、duang地占据各种游戏榜单,并超越索尼、微软,成为全球收入最高的游戏服务商。这个庞然大物到底怎么看待大数据?
最近,小郝子与腾讯游戏的市场营销团队深入交流,深觉其营销要诀不止于依赖大数据,而在“阴阳迭运”——数据化分析、反馈、洞察、修正为“阳”;用户调研与数据的互为印证、品牌的精准策划、创意、媒介、公关、活动等各团队协同合作,高效执行为“阴”。按照大儒朱熹的话说:“阴阳迭运……其理谓之道”。游戏营销之道,便大致如此。
阳——大数据玩法
比如,数年前,射击游戏《逆战》刚刚面世。当时,通过各种渠道,腾讯游戏用研团队收集到的数据显示,玩家吐槽它与老牌游戏《穿越火线》玩法缺少差异性,竞品太多缺乏鲜明特色……因此,项目团队便开始从差异化、加速用户认知下手。
用户数据显示,《逆战》主要玩家为13到22岁之间,FPS中低端用户,地市级城市分布明显,大部分高中及以下学历。而用户研究表明,70%的90后,认为自己是“泛娱乐派”——玩咖、娱乐至死,且多为音乐发烧友,追逐草根崛起的明星……
于是,基于如此种种要素,《逆战》市场团队经过数轮筛选,确定张杰为代言人,打造专门主题曲,契合潜在玩家感受,引发情感共鸣,放大身心带入感,不断吸引用户,进而,积累更丰沛的数据,改进营销手法以及游戏玩法、场景等,最终使张杰通过专辑、演唱会、跨年晚会等方式深度介入《逆战》泛娱乐营销,共同打造的“逆态度”不仅是游戏吸引了更多用户,也为张杰聚集了更多粉丝,使《逆战》营销走向“马太效应”正循环。
可见,从本质上,大数据解决的是游戏营销的效率问题,避免“黑岛工作室”那般的“孤阴不生”——期待不断打动玩家,也有制度、体系配合,却缺乏有效信息获取途径、数据分析能力,市场反馈迟钝,以至于在盲目、低效、反复决策中错失众多机会,走向泯灭。
阴——协作执行
而与上述情况相对,同样重要的是,大数据指路后,各市场团队协同一气,共同精准定位、发现问题、分析问题、解决问题、验证结果后,高效执行。避免Zygna那般的“孤阳不长”——让半吊子游戏随意上线,用大数据方法造势之外,却没有用研团队定性地提醒:长此以往,玩家们被Zynga伤N遍,还有谁待你如初恋?没了玩家,便失去了一切的基础。
设想下,若腾讯游戏没有用研团队对玩家反馈的定性总结,《逆战》品牌策划团队如何能寻得营销进化的路径?若没有后者的针对修正,前者又如何得到有效的验证,进而沿着相关思路拓展,给予更多有效的建议?
与此类似,有赖于腾讯游戏创意设计团队制作的视频《上帝爱消除》,2个月、30万元就换来800万次网上播放和疯传,帮助《天天爱消除》获得大批珍贵的种子用户;也正是在数据团队广告投放分析体系下,腾讯游戏广告投放的千人注册成本才数倍低于行业的均值,让有钱的腾讯避免了在营销上的任性……如此种种,多部门形成连横合纵的“集团军”式协作,才推动腾讯的游戏营销变得“好玩有趣超Happy,内涵装B接地气”。
这样的机制下,个人、部门、项目如高度耦合的齿轮,彼此咬合,快速运转,进而实现游戏营销的“飞轮效应”。
有人说:“好的游戏是艺术与技术的完美结合”。其实,好的游戏营销也是如此——关键之道,在于营销的艺术与大数据技术能阴阳迭运,相得益彰——当然,这同样是门功夫,游戏的营销作手们都该明白,如王家卫电影里的台词:“功夫,一横一竖,对的,站着,错的,倒下”。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21