引入大数据是关键_数据分析师培训
真正有用的医疗信息化系统不单单是贮存医疗档案,否则它就是一套“死系统”。业内人士建议引入大数据比对分析,从而让这套系统“复活”{CDA数据分析师培训}。举个例子,利用大数据进行挖掘后,医疗信息系统会提醒医生开处方时药物的过敏反应,或者会提供医疗措施的建议,告知医生患者需要注射疫苗,或根据医疗文献提醒医生患者最近的症状并不支持刚预约的成像检查。不仅如此,医疗信息系统还可用于人群监测,如对将会流行的传染病的早期症状加以监控,或对新上市的处方药的副作用加以关注。
随着我国区域卫生信息化的快速发展,电子病历的应用和共享将大行其道。如何存储快速增长的、海量的数据,如何对大数据进行分析处理,挖掘价值?这将成为医疗卫生信息化面临的挑战。
中国工程院院士邬贺铨介绍,所谓大数据是指在允许的时间里,无法用常规软件对数据进行抓取、管理和处理而产生的数据集合。医疗数据大体可以分为3种:结构化数据、半结构化数据和非结构化数据。其中,大量的数据属于业务过程中产生的文档等非结构化数据。
卫宁软件一名高管透露,随着信息化的推进,包括电子病历在内的各类健康数据,已经呈现出爆发性增长的态势,数据量是过去的数十倍。这一说法得到上海市卫生局一位负责人的印证,他告诉中国证券报记者,上海市正推进健康信息网工程建设,第一阶段联合了上海市六个区和34家三甲医院,半年时间,数据量已经超过12亿笔,每天的入库量是800万笔,每天以TB级的数据量增长。
这些数据包含大量的非结构化的数据,例如心电图、B超、CT、MR、CR、DR和DSA等。临床的大量影像文件是医生诊断的重要依据。医疗信息化需要将数据转化为宝贵的资源,有效地应用结构性和非结构性数据,从而创造最大价值。
例如,常规的电子病历系统并不包含数据分析功能,其核心部分,还只是患者个体就诊情况的记录。比如说电子病历并不能捕获关节手术接受者的疼痛和康复详情,但如果能够将相关的术后指标存入数据库,就可以帮助其他希望接受手术的患者了解自己可能获得的疗效。显然,通过数据和案例分析为患者确定个性化的医疗方案,比通过专项研究来达到这一目标更为快捷和经济。
邬贺铨介绍,大数据引入医疗信息化领域的第一个应用是临床诊断。“这首先体现在对病人的数据分析。”他说,精准地分析病人的体征、治疗费用和疗效数据,可避免过度治疗、避免副作用较为明显的治疗。通过进一步比较各种治疗措施的效果,医生可更好地确定临床最有效、效益最好的治疗方法。
其次体现在临床决策系统。通过将医生处方和医疗专家库医学指导比较,系统可提醒医生避免出错,如药品不良反应、过度使用抗生素等,帮助医生降低医疗风险。“美国的一个儿科医院通过使用临床决策支持系统,两个月内减少了40%的药品不良反应。”他举例说。
最后是可以让临床医疗数据更加透明。邬贺铨介绍,美国疾控中心公布的医疗数据,可以帮助病人作出更明智的决定,从而选择性价比更高的治疗方案。“通过告诉病人多种不同的医疗方案,病人可以自己选择治疗方案。美国还公开发布不同医院的医疗质量和绩效数据,这有助于督促医院改进医疗服务质量。”邬贺铨评价道,“仅仅这个医疗临床决策系统,对美国来讲,一年就能减少1650亿美元医疗支出。”
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21