网站如何进行用户数据分析_数据分析师培训
一、用户的来源。
1.访问我们网站的用户都是从那些网站过来的?这项数据可以从网站后台技术记录的LOG中分析得出。(虚拟网络来源)
2.访问我们网站的用户都是来自现实中的哪些省份?这项数据可以从网站后台的IP地址记录中分析出。(真实地域来源)
二、网站造访人次。
1.网站每月造访总人次。这项数据来源于后台的LOG分析。
2.网站每日造访总人次。这项数据来源于后台的LOG分析。(以上均以IP个数为准)
3.网站每日每个栏目、每篇文章的造访人次。这项数据来源于后台的LOG分析。
三、用户年龄。
访问我们网站的用户都是在哪些年龄段?具体可以分为15—18岁,18—21岁,21—25岁,26—30岁,30岁—35岁,35岁以上。这项数据来源于网站的人工调查分析。
四、用户职业。
访问我们网站的用户职业分布。大致可分为:学生、上班族白领、自由职业者、政府机关干部、IT卖场服务、高科技产业服务等等。可具体根据网站的定位来进行细分化调查。这项数据来源于网站的人工调查分析。
五、用户习惯。
1.用户浏览我们网站的习惯,主要包括:新闻栏目内容的排列,服务操作的使用是否方便、整体业面的布局使用是否方便、浏览新闻的时候是觉得哪里不适合您的浏览习惯?等等。具体可以根据各自网站的特点进行细分化。这项很重要,大部分用户在互联网上已经养成了一定的浏览和访问的习惯。符合他们习惯的设计服务,会粘住这些用户。这项数据来源于网站的人工调查分析,与网站后台技术分析。
2.用户习惯于每天什么时间浏览我们的网站?也就是大部分访问网站的登陆时间。{CDA数据分析师培训}这项数据必须要求精确。模糊、大概、可能这样的词语不可以使用,否则这项数据将失去意义。这项数据来源于网站的人工调查分析,与网站后台技术分析的结合。
3.用户习惯于在我们的网站上停留多久?也就是大部分用户在我们网站直到关掉我们站点中间停留的时间,这部分数据可以充分的说明,我们网站的内容做的是否对用户的胃口,内容的质量是否对比上周有提高?内容是否具有粘滞力。这是最有说服力,也最客观的分析数据。这项数据来源于网站的人工调查分析,与网站后台技术分析结合的方式来获得。
六、用户所最喜欢的网站服务。
用户最喜欢的网站服务是什么?是商城?是渠道信息?是RSS服务?是论坛社区?是硬件信息?是软件技术信息?等等……这项数据可以充分的了解我们的服务该朝哪个方向努力,该强加哪些方面。
七、用户最讨厌的网站服务。
1.用户最讨厌的网站服务是什么?是商城?是渠道信息?是RSS服务?是论坛社区?是硬件信息?是软件技术信息?等等……为什么讨厌?这点数据是我们如何提高和改变自己服务模式的重要依据。
2.每周评选网站做的最差的栏目,或者服务。让网站的用户来评选出,网站每周做的最差的是哪个栏目?为什么差?这个栏目由谁来负责?被用户评为最差的原因在哪里?这样分析讨论找出原因后,再进行评选,如果一个栏目连续几周内都被用户评为最差栏目,那么这个栏目的相关负责人就要受到相应的处罚。必须明确栏目与责任人的关系,否则到时候数据出来了也不好处理。如果处理之后还是最差,那么就是这个栏目本身定位就有问题。再开会讨论确立是否需要淘汰。
八、用户最喜欢的网站活动。
网站活动是聚集网站人气行之有效的手段,但是至于做什么活动?还是应该由网站的用户来说的算。通过充分的人工调查,了解了用户们最喜欢的活动,那么就可以在今后的工作计划中逐渐安排这些网站活动。以带动人气,提高访问。
九、用户的建议和意见整理。
在网站的显眼之处,留出一个用户可以直接留言给网站的管理者的留言板,这个留言板可以不对外。但务必每周将网站用户集中反馈上来的意见和建议都整理好,留做会议上讨论去粗取精,使网站的工作有明确的改进方向。
对于站长而言,不同的网站提供的内容和服务不同,用户行为分析的侧重点也不尽相同。但是,几乎所有的网站用户分析都是基于用户属性和用户详细行为来展开各种联系关系或逻辑推理分析。以上网站用户数据分析中是我自己地的一些见解,你觉得有哪些要补充的?欢迎与笔者探讨经验。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21