CDA数据分析师等级认证考试:
LevelⅠ:统计概率基础知识,数据库基础知识,解决简单的数据处理与数据分析。
LevelⅡ:多元统计、数据挖掘、数据建模、数据库及商业智能等知识,利用软件进行复杂数据的处理和案例分析,并得出规范的数据报告。
LevelⅢ: 除以上知识点还包括数据挖掘高级算法,Hdoop,SAS与R编程技术等,利用工具完成复杂数据分析项目,做出报告、提供决策并管理团队执行部署。
三个等级考试通后由CDA协会颁发等级认证证书,CDA证书为唯一的等级认证依据。此证书可以作为企业事业单位选拔和聘用专业人才的任职参考依据。
报考"CDA数据分析师"条件如下:
Level Ⅰ:本科及以上学历或从事数据分析工作1年以上。
Level Ⅱ:本科及以上学历并从事数据分析相关工作2年以上。
Level Ⅲ:本科及以上学历并从事数据分析相关工作5年以上。
CDA数据分析师考试内容:
Level Ⅰ:单选题
Level Ⅱ:单选+简答
Level Ⅲ:单选+简答+案例分析
CDA数据分析师官方考试最新安排:
时间:2014年12月
地点:北京/上海/广州
考试等级:CDA Level Ⅰ
考试费用:1000元(CDA学员600元)
考试及等级认证证书颁发最终解释权在CDA数据分析师协会(Certified Data Analyst Institute)。
数据分析师:你应具备的基本个人技能
1.信息敏感性及搜集处理能力。
这个社会是个信息社会,信息社会的信息就会多,很多是你不需要的,很多是重复的,要么就是内容重复,要么就是架构重复。而你真正想要的信息恐怕只有沧海一粟,你就是要把这沧海一粟找出来。
处理能力是指沧海一粟的数据得到后,进行组织串联。数据组织起来才是信息。我们要的不是数字,而是信息。
2.文化背景:熟悉各个层次的人群的属性及思维方式。
你必须了解你的领导做过什么,习惯的思维方式,否则你的报告他是看不懂的,你应该以领导的思维方式去写报告,而不是你自己的。因为你是给领导服务的。领导是你最大的客户,你的同事是你的伙伴,他们帮助你服务你的客户,而你真实的客户则是你的供货商,他们提供服务你领导一切素材。所以,你要利用你的供应商,在伙伴的帮助下,服务好你的客户。你必须理解你的‘客户’,‘伙伴’,‘供应商’在想什么,了解他们的思维方式,甚至爱吃什么,抽什么样的烟,喝什么样的咖啡,喜欢安静的喝茶,还是去泡吧。
3.熟悉心理学,并做过问卷调查等实验。
心理学必须学会,也许你是心理学毕业的,也许你说我很会说。其实一个EQ高的人和一个在社会上混了多年的人,不用学心理学也知道你在想什么。他们都是心理学的大家,虽然他们不会提心理学这个词。不过,这个只是社交。如果做一个网站,你要考虑你的用户在想什么,需要什么,什么情况下会到你的网站来。如果你的网站做个调查,或者要和客服咨询才能找到他要的答案,如价格,那他很可能在3秒内跳到其他网站去了。网站的推荐功能会使这个事情变的很容易。这也许就是ucd吧。
有关心理学还是从文化看起,看看西方文化简史,毕竟现在很多东西都是泊来品。中国文化史,不是社会史,也不是技术史。多了解当前客户群的文化背景。书么,我推荐马斯洛的书,经典的黑格尔的辨证哲学有时候还是毕竟有用的,毕竟马老先生的辨证哲学是从他这里演化过来的。
有了心理学基础去设计问卷就不是什么难事了。不用担心统计用户的答卷不真实。只要不是55开,就能统计整体意向,有成熟的模型的。
4.熟悉相关的行业知识:营销、技术、品牌等。
行业知识是必不可少的,要了解产品,营销,战略,品牌等等是需要很长时间的,像互联网行业,你要懂前台的ui设计,不要想加个修改功能会提供客户的满意度,但是技术实现可能要加几十个k的流量,如果是千万的用户对服务器,流量,都会压力大。而且pc, 移动终端的还要同步,更不要说,内容反复的修改了,本来说油价上涨的,可能改成奥沙利文大战希金斯了。
5.熟悉数学模型的缺点。
数学模型的实用都有自己的数据要求的,如对分布的数据要求均匀,不要太稀疏,欧式距离不要不均匀等等。只有熟悉的模型的缺点和适用范围,你才能保证自己的模型应用的够顺利,不要老盯着那些传统模型不放,那些模型都很经典,经典意味着通用,以为着不适合个例,意味着你要修改模型以适用于当前的情况,这要求你能懂的模型。
6.性格的韧度。
数据分析师经常会遇到这样的情况:1.辛苦做了几天的数据,对比事实根本不合理。2.由于模型的局 限性,数据的不良性产生的巨大误差。3.业务改变使自己的模型改变,进而使数据结果失效。4.报告的书写不够规范,被同事,老板骂。这些都需要我们自己去解决,而不是抱怨。没人想听到你的抱怨和一些消极的词汇,这只会让人感觉你的个人素质不足以满足不同人的需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师这个职业已经成为了职场中的“香饽饽”,无论是互联网公司还是传统行业,都离不开数据支持。想成为一名优秀的数据分析 ...
2024-12-26在数据驱动决策成为商业常态的今天,数据分析师这一职业正迎来前所未有的机遇与挑战。很多希望转行或初入职场的人士不禁询问:数 ...
2024-12-25数据分析师,这一近年来炙手可热的职业,吸引了大量求职者的注意。凭借在大数据时代中的关键作用,数据分析师不仅需要具备处理数 ...
2024-12-25在当今数字化变革的浪潮中,数据分析师这一职业正迎来前所未有的发展机遇。回想我自己初入数据分析行业时,那种既兴奋又略显谨慎 ...
2024-12-25在当今信息爆炸的时代,数据已经像空气一样无处不在,而数据分析则是解锁这些信息宝藏的钥匙。数据分析的过程就像是一次探险,从 ...
2024-12-25在职场上,拍脑袋做决策的时代早已过去。数据分析正在成为每个职场人的核心竞争力,不仅能帮你找到问题,还能提供解决方案,提升 ...
2024-12-24Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19