如何采集和分析法律大数据_数据分析师培训
第一步 数据采集与归类
在中国裁判文书网采集裁判文书,目前是不能直接进行复制的,即使采取某些技术手段复制了,也需要重新建立文档进行粘贴、为文档重命名。可能您觉得没神马,但这样来回重复几千下还是让人崩溃呀。(自我反省,我是不是太懒了?)可有什么方法可以简便快速的搞定裁判文书的采集呢?
1、安装印象笔记
请保证您的电脑上(不分系统)有印象笔记,红圈中可爱的小象就是印象笔记了。
2、按照省份新建若干笔记本
对实现担保物权特别程序的大数据分析,少不了要区分省份进行对比,因此,我以省份为项新建了若干笔记本,这些笔记本又组成一个实现担保物权的笔记本组。以后我对实现担保物权采集的全部素材就统统包含在这个笔记本组里了。
3、安装印象笔记剪藏功能,使之能在浏览器上进行裁判文书采集分类
图片中黄色圈部分就是印象笔记的剪藏功能按钮了。如图,我在浏览器上将需要收集的裁判文书打开,点击黄圈部分剪藏功能按钮,然后就会出现图右边印象笔记对话框。确定绿点选定在蓝色圈的“网页正文”选项上,然后按照裁判文书省份选定之前新建的笔记本,最后点击确认。
这样,越过了裁判文书网无法复制的障碍,抛弃了重复复制、粘贴、建立文档等繁杂步骤,每份裁判只需要轻点几下就乖乖收入到了我的印象笔记实现担保物权笔记本组中,并且已经按照省份做好了分类。
例如,在安徽省笔记本中,每份裁定书自动成为一条笔记,红色部分自动统计该笔记本中的笔记条数,说明安徽省共116份裁定文书(帮我省了统计各省案件数量的活)。
自此,裁判文书的收集、分类完成。在有印象笔记软件的电脑、手机、ipad上,只要我登陆自己的账户,就可以查看收集全部裁判文书,随时随地工作。
第二步 分项统计及分析
1、分析项信息录入
本次实现担保物权大数据报告,我们设定了15个BI分析项,包括申请人性质、担保物权类型、审理形式、是否进行财产保全等。这个时候,excel出场了。
如图黄色部分,我将需要分析的项在excel的第一行列出,并将每个省份作为一个工作表(红色部分),在数据分析软件excel中录入分析信息。更好的是,有时候需要直接复制裁判文书内容到excel中,印象笔记完全可以满足我。注意,分析表中没有案号一项,我认为案号的录入也是相当大的工作量(再次自省,是不是太懒了?),那如何解决?
2、不用单独费力录入案号,印象笔记来帮忙
如何将excel的每个案件信息与印象笔记中的每份裁判相对应?如果靠excel最左列数字,用数的方法对应印象笔记中的裁判文书顺序,第19份还好,第99份呢,第199份呢、甚至第1999份呢?
这个问题,印象笔记目录功能可以解决。
以广东省为例,将广东省笔记本内的笔记全选(快捷键:苹果系统command+A,windows系统下control+A),就会出现右边红色部分“创建目录”,点击创建目录。这样,广东省的全部裁判文书就按照顺序形成如下的目录笔记。
在这样的操作下,需要您保证excel分析信息录入是按照每个笔记本中的每条笔记顺序进行的,则excel的行号减1(第一行是分析项名称)就与目录中的红色圈中的数字对应。找到对应的目录数字后,只需要轻轻一点目录数字后面绿色部分,印象笔记自动为您跳转到该条笔记,无需您费力在几百甚至上千个案例中寻找。
3、筛选器,只看想看到的信息
信息录入后,要对各项信息进行归纳、分析、统计,筛选器在这个时候堪比贴心小棉袄。如图红色部分,对第一行分析项设置数据下的筛选器功能,这样在分析项中就会出现下拉三角形标志。
如下图,如果我需要统计该省份采用合议庭进行审理的案件数量,点击筛选器的下拉三角形,勾选合议,则表中仅出现审理形式为合议庭的案件信息。这样,分析、统计变得一目了然。
解决了裁判文书采集、归类,信息录入及筛选,您的大数据分析准备工作已经基本完毕。接下来,就是利用收集的裁判文书、通过分析项信息的对比、统计,进行成果提炼、分析等工作,最后形成大数据报告。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21