从大数据到智能数据 你准备好了吗_数据分析师
在工业化时代,机械力量的崛起改变了各行各业的面貌。在信息时代,计算机处理技术创造了新的商业模式。随着我们进入大数据时代,那些拥有繁荣发展前景的企业具备以下特征:巧妙地利用数据捕捉到能够改变游戏规则的分析理论和具有洞察力的观点,进而创造出新的创新型解决方案。
我们的研究表明,十家机构投资者中有九家认为数据和分析理论是关键性的战略优先事项。但是,把一件事放在优先位置并不总是等于给予了该事项应有的关注。换句话说,投资行业的很多人吃尽苦头才学到以下道理,即在大海里捞针是一回事,用这根针来缝东西又完全是另一码事。
数据方面的引领者和落后者的区别不是因为领先者更有实力而是因为落后者的瘫痪不作为。简单地说,可以很容易地—尽管昂贵—购买外置服务器和软件来收集和处理你的公司和所在行业产生的无穷无尽的数据流。但是,缺乏洞察分析的信息会鼓励不作为。这些信息没有被使用;瘫痪随之发生。你的企业—其所有的卖点—将会在竞争中落后。你可以告诉你的股东和董事会,你有一个大数据策略,但是你不能告诉他们你有一个智能数据解决方案。
对于来自日益复杂的投资世界的数据,智能数据解决方案能够帮助对其进行修正、管理和分析。因为科技使这些数据能够转移至实时平台,由此提供了宽阔的视野来支持风险管理和合规管理领域的关键决策制定。随着更为先进的分析工具的引进,关键是人们具备必要的专业知识来对数据进行理解并根据分析结果采取行动。
当我们理解了数据的目标时,大数据就变成了智能数据。比方说,金融机构可以探索利用大数据科技来降低成本—通过自动化把成本变得更低。大量的信息和庞大的计算能力也能够帮助减少时间的消耗—从简单的、更快速的执行到针对出现的风险进行建模对冲。
大数据可能包括的是有关客户潜在的需求信息;智能数据则提供了客户正在寻找的解决方案。它不仅向企业显示其客户的需求方向,也能够更容易地支持内部商业决策。
新市场意味着要对新的信息和新的语言代码进行阐释。作为投资者,传统上往往集中于做多策略,现在则为了追求阿尔法值转而进入新的另类资产类别,那么他们必须建立起必要的基础设施来支持这些新类型的投资。因此,风险管理成为一个投资者特别关注的问题。除了考虑上述新资产类别的风险,投资者还必须分析其投资决策的变化会对整体资产组合造成怎样的影响。
多资产类别、跨资产组合的分析学是理解风险所有含义的关键所在。我见过我们的机构投资者在这个过程中对数据管理感到困难,特别是当他们从传统的另类资产经理那里汇集信息和进行分析风险的时候。此外,他们自己的客户要求更大的透明度和更多的汇报。在这里,假如有一个框架能够汇集来自不同来源的数据并置入能够提供客户定制的风险报告的工具,这有助于解决上述挑战并展示出聪明地使用数据的好处。
监管汇报的复杂性和深度已经带来了更多的挑战。在很多情况下,金融机构现在被要求汇集和阐释其公司内部的所有信息并将这些信息转化为一个实时的资产组合概览。这不仅提供了监管者所要求的透明度,而且也赋予了投资者以下能力,即从商业智能平台数据中更好地洞察造市交易并据此做出更好的投资决策。
今天的市场领袖了解上述问题,他们已经迅速采取了大胆的举措来确保数据不被降级到仅被后台办公室用于会计和基准设定。简单地说,对最好的风险管理的需求以及投资者之间的透明度已经将数据置于前沿,作为一个关键的卖点和基金经理之间的一个区别点。
好消息是许多投资者理解这对于其业务和资产组合长期表现的关键性。我们的研究表明,被调查的400个机构投资者中,有86%在过去三年已经增加了对数据和分析学的基础设施投资。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21