企业核心竞争力与大数据决策_数据分析师培训
在很多有关企业核心竞争力的研究中,企业决策能力被放在首要位置。中国很多企业,决策集中在一些少数人手中,更多的一些私人企业老板,相信自己直觉和经验。在过去直觉和经验决策,让很多企业获得成功,随着商业环境的变化,我们发现决策风险比过去大很多。直觉和经验已越来越抵抗不了环境变化带来的风险,而这些环境变化相较过去更加复杂,速度更快。
企业核心竞争力
很多有关企业核心竞争力的研究中,企业决策能力被放在首要位置。常见的直接的定义方法,用这样一个公式表示:企业核心竞争力=决策力×支持力×执行力。在“张氏”核竞争力研究中,把核心分解10个组成部分,那么第一个也是最重要的一个便是企业决策力。这种竞争力,是企业辨别发展陷阱和市场机会,对环境变化作出及时有效反应的能力。不具有这一竞争力,核心竞争力也就成了一具腐尸。决策竞争力与企业决策力是一种同一关系。决策频频失误的企业,肯定没有决策竞争力。没有决策竞争力的企业,也就是企业决策力薄弱。
决策力中的经验和大数据
经验和数据是决策的两大方式,有的人执着于以往的经验,有的人相信数据,而有的人把数据和经验结合形成更为科学的决策模式。
调查显示,更多的大陆或香港企业愿意采用数据支持,进行决策。决策模式决定决策能力,而现实中,实现数据决策并不容易。
大数据与农夫山泉终端决策
产品摆放位置一直是销售终端研究主要课题,过去人们找到更为合理摆放位置,需要人工蹬守观察。
看一个农夫山泉的例子。来自农夫山泉的业务员每天例行公事地来到这个点,拍摄10张照片:水怎么摆放、位置有什么变化、高度如何……这样的点每个业务员一天要跑15个,按照规定,下班之前150张照片就被传回了杭州总部。每个业务员,每天会产生的数据量在10M,这似乎并不是个大数字。但农夫山泉全国有10000个业务员,这样每天的数据就是100G,每月为3TB。
如果想知道:怎样摆放水堆更能促进销售?什么年龄的消费者在水堆前停留更久,他们一次购买的量多大?气温的变化让购买行为发生了哪些改变?竞争对手的新包装对销售产生了怎样的影响?不少问题目前也可以回答,但它们更多是基于经验,而不是基于数据。因为他们抱着一个金山,但没有开发,人工无法对影像进行分析,找到想要的结论。如果超市、金融公司与农夫山泉有某种渠道来分享信息,如果类似图像、视频和音频资料可以系统分析方法,所有以上通过大数据分析系统都会找到答案。
大数据应用与阿迪达斯战略转型
2008年之后,库存问题确实很严重,中国服装行业经历寒冬,不少企业出现库存危机。阿迪达斯也不例外,很多企业把降价、打折等手段作为清库存手段,然而这些手段只能制标不能制本。企业库存高企根本原因,是企业的管理模式出现问题。
阿迪达斯产品线丰富,过去,面对展厅里各式各样的产品,经销商很容易按个人偏好下订单。现在,阿迪达斯会用数据说话,帮助经销商选择最适合的产品。首先,从宏观上看,一、二线城市的消费者对品牌和时尚更为敏感,可以重点投放采用前沿科技的产品、运动经典系列的服装以及设计师合作产品系列。在低线城市,消费者更关注产品的价值与功能,诸如纯棉制品这样高性价比的产品,在这些市场会更受欢迎。其次,阿迪达斯会参照经销商的终端数据,给予更具体的产品订购建议。比如,阿迪达斯可能会告诉某低线市场的经销商,在其辖区,普通跑步鞋比添加了减震设备的跑鞋更好卖;至于颜色,比起红色,当地消费者更偏爱蓝色。
挖掘大数据,让阿迪达斯有了许多有趣的发现。同在中国南部,那里部分城市受香港风尚影响非常大;而另一些地方,消费者更愿意追随韩国潮流。同为一线城市,北京和上海消费趋势不同,气候是主要的原因。还有,高线城市消费者的消费品位和习惯更为成熟,当地消费者需要不同的服装以应对不同场合的需要,上班、吃饭、喝咖啡、去夜店,需要不同风格的多套衣服,但在低线城市,一位女性往往只要有应对上班、休闲、宴请的三种不同风格的服饰就可以。两相对比,高线城市,显然为阿迪达斯提供了更多细分市场的选择。
实际上,对大数据的运用,也顺应了阿迪达斯大中华区战略转型的需要。库存危机后,阿迪达斯从“批发型”公司转为“零售驱动型”公司,它从过去只关注把产品卖给经销商,变成了将产品卖到终端消费者手中的有力推动者。而数据收集分析,恰恰能让其更好地帮助经销商提高售罄率。
大数据应用决策例子还有很多,如何科学决策,提高决策能力,进而提高企业核心竞争力,是很多企业必须面临的问题。大数据时代到来,让过去不可能进行数据决策的,成为可能,在未来大数据在企业战略管理中也将占居越来越重要的位置。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31