大数据时代的知识_数据分析师培训
进入网络大数据时代之后,海量的知识顿时如潮水涌现,令人眼花缭乱。到底哪些是真知识,并且是有用的知识?现在成了一个难题。如果在大数据时代善于将知识有效利用,这也是不错的时代,可惜并非所有人都是如此。《知识的边界》([美]戴维·温伯格著, 胡泳、高美译,山西人民出版社)这本书,就是围绕“大数据时代的知识”一系列问题展开了深层次的探讨和反思。
本书作者戴维·温伯格是哈佛大学资深研究员,围绕网络社会与知识创新等热点话题,经常为美国《连线》《纽约时报》《哈佛商业评论》等报刊撰稿。《知识的边界》一书共分为“知识超载”“深不可测的知识海洋”“长形式,网形式”等九个篇章。每一篇章中,温伯格对于“大数据时代的知识”进行了不同层面、不同维度的分析和梳理。大数据时代的知识是较之印刷时代的知识而言的,印刷时代的知识是静态、单向度、线性的传播方式;而大数据时代的知识则恰恰相反,美国云计算之父马克·贝尼奥夫认为,大数据时代的知识具有社交性、流动性、开放性的特征。而温伯格则在书中一语中的:“大数据时代的知识没有边界、也没有形状。”
大数据时代的知识,没有像印刷时代对知识结构视为必须具备的“基础”,知识是非线性的,可以自由组合、切割,处于一种游离状态,有点“召之即来,来之可取”的意味。温伯格在书中,对一系列基本概念提出了批判性的思考。比如,他在阐发“事实”的概念时,认为人类社会只有到了十九世纪,“事实”才成为知识的基础和解决争论的最终方法。他写道:“但我们应该意识到,那个时期对事实的看法,并非基于事实而是基于发表事实的纸质媒体。”今天大数据时代所提供的“事实”,远远超出了传统书籍的范围, “事实”充满林林总总的分歧和争论。
大数据时代的知识,如同一张无限扩展的大网,将人类所有知识“一网打尽”。而在先前的印刷时代,知识主要依靠出版,少数的知识精英把持知识的传播特权;网络新媒体开启的大数据时代,则是一场更为深远的知识颠覆性变革,知识传播呈几何级数式增长。当前,网络新媒体技术打破了精英与平民之间的知识壁垒,改变了自上而下的知识传播模式,使知识的生产与传播陷入不确定的状态。
温伯格对于大数据时代的知识秉持乐观的态度。从客观上看,大数据时代的知识学习,确实有其便捷性,这是不争的事实。
如果说大数据时代的知识给人带来便捷,那么拓展人们的知识视野,则更有不可替代的优势。2011年以来,一种名为“慕课”(在线学习网络)的学习方式,给知识的学习与传播带来划时代的“革命”。“慕课”的周围,聚集着全球各地的青年学生,他们各自在家中的电脑前,在线聆听老师授课。老师在授课中学生可以随时提问,课后师生之间可以进行互动性的交流,老师在线批改作业,进行课业点评。这种学习知识的新方式,令人们毫无时空的阻隔感。“立体式”的知识传播,使得传统的课堂受到严峻挑战。现在有专家认为,“慕课”猛于虎,那些讲课不精彩、专业基础不扎实的教师,将来在“慕课”的浪潮中面临职业危机。
这里不得不提,大数据时代的知识便捷性只是相对而言。假如高度依赖网络数据进行学术研究或者文学创作,笔者有着隐隐的担忧:因为学者、作家使用数据库后,省略了在稿纸上的“各种比划”,思考中的各种揣摩、猜疑和最初的灵感火花,无法原汁原味地留存。众所周知,学术研究或者文学创作过程中那些潦草、凌乱的文稿笔迹,是知识的半成品,具备极高的研究价值。大数据时代将大脑思索的过程轻而易举地抹掉,应该引起足够的关注。
大数据时代的知识能轻松获得,也并不意味着就能真正掌握知识。大数据时代的知识仅仅是一种资源,好比家中存放成百上千的书籍,如果不去研读,知识和人依然无关。不管处于怎样的一种时代,知识需要人们花苦功夫钻研,否则再多的知识也无意义。另外,现在不少人,凡是有不懂的问题,习惯性地上网搜索,不做任何甄别地将网上的知识和答案奉为宝典。长此以往,久而久之会使大脑变得懒惰,思维变得迟钝。大数据时代的知识,究竟是令人变得聪明还是愚笨?
《知识的边界》一书的魅力,在于它所呈现的思辨层面的丰富性,以及从无数具体的论争、微小的案例出发,对知识本身的学习、生产、传播、知识内部要素以及知识的外部影响,进行了层层深入、环环相扣的论述。在很多看上去不是问题的问题的追问中,温伯格表现出深厚的知识思辨能力,这是极为难得的。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21