如何解决政府大数据躺在档案柜里“睡大觉”
政府大数据应用效率低 应重视和认知几个问题
近日,第十二届全国政协第三次会议和第十二届全国人大第三次会议正在北京召开中。会上,来自全国各地的代表委员们共商国家大事,热议民生问题,总结过去,规划未来。今年两会两会上,有几个十分引人关注的问题,大数据就是其中一个。
第十二届全国人大代表孙丕恕在会上指出,“随着电子政务建设的不断发展,各级政府积累了大量与公众生产生活息息相关的数据,并成为社会上最大的数据保有者,掌握着全社会信息资源的80%,其中包括3000余个数据库。”而事实上,我国政府大数据利用状况却极不理想,很多政府数据躺在相关部门的档案柜里“睡大觉”。
坚持不懈地呼吁源自一种紧迫感。“西方主要发达国家都将其政府数据开放作为国家战略推动,借助政府数据开放,美国的医疗服务业节省3000亿美元,制造业在产品开发、组装等环节节省50%的成本。”孙丕恕说,目前,上海、北京、青岛等地先后出台了数据开放相关政策,搭建了政府数据开放平台,但也存在一系列问题。
他认为,这些问题集中表现在缺乏顶层设计和统筹规划、推动措施,很多政府部门担心增加工作负担,甚至顾忌数据披露会暴露管理中的不足,因而主动性不强;相关数据安全、隐私保护法律不健全,缺乏统一数据开放标准,地方政府和垂直系统各自为战,造成新的“开放的数据孤岛”。
“在国外,数据开放的工作都有明确的部门来负责,有效推动了这项工作的进展。例如,美国的data.gov是由美国总务管理局(General Services Administration)负责管理,并持续改进该网站。美国行政管理和预算局(Officeof Managementand Budget)负责设计网站的结构与规划。”孙丕恕建议,我国政府数据公开应明确组织机构,制定行动规划,研究制定政府数据开发目录和格式标准,“书同文、车同轨”。
从建设步骤和开放范围来看,他建议按照先易后难、分步实施的原则,逐步在全国分领域、分区域实施。“建议选择试点区域,推动相关部门首先整理社会关注度高,与居民生活、公共服务、社会环境和环境保护等方面相关的数据,例如气象、交通、旅游、物价等部门所掌握的基础数据、业务类数据、管理类数据、统计类数据等。”
除了唤醒“沉睡”的政府数据,在孙丕恕看来,当前应该积极推进金融、电商、公共事业等大型企业数据的开放共享,在信用体系建设方面用好大数据。
“目前,金融信用信息基础数据库已经为1859.6万户企业和其他组织及8.2亿自然人建立了信用档案,这些数据第三方机构很难获得。”孙丕恕说,当前央行征信也在逐步建立信用的共享机制,但大部分局限于金融机构内部,没有有效地向社会开放。电信运营商、水电煤等公共事业机构内也积累了多年的业务数据,互联网公司则收集了大量的用户和企业信用数据,这些公司基于商业利益等不将数据开放,而是基于自有的局部数据开展征信服务业务。“目前,个人征信市场已向民营企业开放,大企业间也在积极谋求数据获取和数据共享的路径,如建立数据开放平台引入或交换第三方数据,但这些都缺乏明确的规范和政策,这一领域的数据壁垒问题亟需解决。”
政府大数据应用,应重视和认识的几个问题:
一是国家优先发展战略。大数据应用领先国家的所有大数据项目,都具有国家优先发展的相关目标(比如数据的开放和已获得,公民更好参与公共事务)。对大数据应用的主要关注点集中于安全、速度、交互性、分析能力,和缺少胜任的专业人员。然而,每个国家的政府基于其独有的环境,有自身的优势、机会和威胁。
二是分析机构。对于跨部门的数据,管理和综合数据需要一个自上而下的统筹。政府应建立一个大数据控制中心以综合各部门既有数据的数据库,包括结构化和非结构化的。此外,政府还需要建立一个先进的分析机构负责开发战略,处理大数据如何通过新技术平台进行管理和分析,如何招募到熟练的从业人员。
三是实时分析。政府需要管理即时更新的大数据,并进行实时分析,同时保护个人信息安全,还需要探索的新技术平台(比如云计算,先进分析和安全技术)。相当多的政府数据在性质上是全球化的,而且能够被用于预防和解决全球事务,因此必须开展全球合作。
四是国际化。各国政府间努力集成和共享地球观测数据。全球地球观测系统,是一个全球性的公共基础设施,产生了综合的、接近实时性的环境数据,目的是为全球使用者和决策制定者提供信息以供分析。政府也需要共享与安全威胁、诈骗和非法活动相关的数据。这种大数据需求不仅需要转换技术,还需要国际化的协作去共享和综合数据。
五是ICT专业公司。政府应该与ICT专业公司合作。例如,亚马逊AWS关联很多公共数据集,包括日本、美国人口调查数据和许多基因组及医疗数据库。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28