
时间序列分析之季节分解(上)_数据分析师
一、什么是时间序列
时间序列的分析方法就是将历史数据按照时间的顺序进行排列并进行统计分析研究,模拟出事物变化发展的规律,建立预测模型,预测事物未来发展及变化趋势,确定市场预测值。它是数据外推的高级方法。
1、水平型时间数列
水平型时间数列的走势无倾向性,既不倾向于逐步增加,也不倾向于逐步减少,总是在某一水平上上下波动,且波动无规律性,即时间数列的后序值,既可高于水平值、也可低于水平值,因这一水平是相对稳定的。故水平型数列又称为稳定型时间数列或平稳型时间数列。
通常呈水平型时间数列的有日用生活必需品的销售量,某种耐用消费品的开箱合格率、返修率等等。
2、季节型时间数列
季节型时间数列的走势按日历时间周期起伏,即在某日历时间段内时间数列的后序值逐步向上,到达顶峰后逐步向下,探谷底后又逐步向上,周而复始。因为最初研究产生于伴随一年四季气候的变化而出现的现象数量变化,故称为季节型时间数列。其实,“季节”可是一年中的四季、一年中的12个月、一月中的4周、一周中的7天等等。
通常呈季节型时间数列的有月社会零售额,与气候有关的季节性商品季度、月度销售量等等。
3、循环型时间数列
循环型时间数列的走势也呈周期性变化,但他不是在一个不变的时间间隔中反复出现,且每一周期长度一般都有若干年。通常呈循环型时间数列的有期货价格、商业周期等等。
4、直线趋势型时间数列
直线趋势型时间数列的走势具有倾向性,即在一段较长的时期之内(“长”是相对于所研究数列的时间尺度而言),时间数列的后序值逐步增加或逐步减少,显示出一种向上或向下的趋势,相当于给水平型时间数列一个斜率。通常呈直线型时间数列的有:某段时期的人均收入、商品的销售量等等。
5、曲线趋势型时间数列
曲线趋势型时间数列的走势也具有倾向性,且会逐渐转向,包括顺转和逆转,但不发生周期性变化,时间数列后序值增加或减少的幅度会逐渐扩大或缩小。通常呈曲线型时间数列的有某种商品从进入市场到被市场淘汰的销售量变化等等。其实,季节型时间数列和循环型时间数列也是曲线趋势型时间数列,只不过他们具有周期性特征而各单独成为一种时间数列而已。
二、时间序列的季节分解模型
我们把时间序列看成是长期趋势因素,季节因素,周期因素以及不规则因素四个部分综合作用,复合叠加的结果。按对四种变动因素相互关系的不同假设,可将时间序列分为加法模型和乘法模型。
时间序列分析之季节分解(上)
1、加法模型:这种模型的应用前提是四种变动因素为相互独立关系,时间数列便是各因素相加的和,表现为:Yt=Tt+St+Ct+It
其中:Yt表示时间序列在t时刻的绝对数值;Tt也是绝对指数,与Yt同单位;St、Ct、It表示季节变化、周期变化和不规则变化围绕长期趋势所产生的偏差,或是正直,或是负值,他们的量纲与Tt相同,表示是在Tt的基础上变化了若干单位。
2、乘法模型:这种模型的应用前提为四种因素之间是交错的影响关系,时间序列便是各因素的乘积,表现为:Yt=Tt×St×Ct×It
其中:Yt、Tt均为绝对指标,St、Ct、It是指在Tt上下波动的数值,被称为指数,它们分别表示由于季节、周期以及不规则因素的影响,在序列t时刻的趋势值得基础上增加或减小百分比。
这两种模型只是形式上的不同,乘法模型可以通过在等式两边取对数而转换为加法模型,而时间序列就是以上四个因素相叠加综合作用的结果。实际应用中,当采用年度数据时,季节因素就被掩盖了。事实上,有些现象的时间序列并非四种因素均存在,有时仅有Tt、St和Ct,或其它形式。在社会经济系统中,主要采用乘法模型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10