一、简介
LevelDB是google开源的一个key-value存储引擎库,从版本1.2开始就能够支持billion级别的数据量了。LevelDB是单进程的服务,性能非常之高,在一台4个Q6600的CPU机器上,每秒钟写数据超过40w,而随机读的性能每秒钟超过10w。LevelDB采用日志式的写方式来提高写性能,但是牺牲了部分读性能。为了弥补牺牲了的读性能,一些人提议使用SSD作为存储介质。
二、编译
LevelDB是一个C++库,而非Server,编译需要g++的支持,这里以1.4为例说明之。
源码可以直接从这里下载,也可以用git clone源码:
#git clone
如果上面操作都无法获取源码,也可以点击这里下载源码。
#cd leveldb && make all
此时在,当前目录(levedb)下会产生libleveldb.a和libleveldb.so,这样就可以使用了。
三、实例
一个LevelDB数据库需要有一个对应的文件系统目录名字,该数据库的所有内容都存储在这个目录下。
LevelDB的使用很简单,一般分三步走:
(1)打开一个数据库实例。
(2)对这个数据库实例进行插入,修改和查询操作。
(3)最后在使用完成之后,关闭该数据库。
#cd ../ && mkdir test && cd test && vi main.cpp
具体实例如下:
#include
#include
#include
#include
int main(int argc, char** argv)
{
leveldb::DB* db;
leveldb::Options options;
// 如果打开已存在数据库的时候,需要抛出错误,将以下代码插在leveldb::DB::Open方法前面
options.create_if_missing = true;
// 打开一个数据库实例
leveldb::Status status = leveldb::DB::Open(options, "/tmp/testdb", &db);
assert(status.ok());
// LevelDB提供了Put、Get和Delete三个方法对数据库进行添加、查询和删除
std::string key = "key";
std::string value = "value";
// 添加key=value
status = db->Put(leveldb::WriteOptions(), key, value);
assert(status.ok());
// 根据key查询value
status = db->Get(leveldb::ReadOptions(), key, &value);
assert(status.ok());
std::cout<
std::string key2 = "key2";
// 添加key2=value
status = db->Put(leveldb::WriteOptions(),key2,value);
assert(status.ok());
// 删除key
status = db->Delete(leveldb::WriteOptions(), key);
// 查询key2
assert(status.ok());
status = db->Get(leveldb::ReadOptions(), key2, &value);
assert(status.ok());
std::cout<
status = db->Get(leveldb::ReadOptions(), key, &value);
if (!status.ok())
{
std::cerr<
else
{
std::cout<
// 在对数据库进行了一系列的操作之后,需要对数据库进行关闭,该操作比较简单即删除该对象即可
delete db;
return 0;
}
#g++ -o main main.cpp ../leveldb/libleveldb.a -lpthread -I../leveldb/include
实例编译完成后,如下来执行即可看到结果:
#./main
value
key2==value
key: NotFound:
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21