
一、简要介绍
对于大数据的处理,在离线方面,Hadoop很完美地解决了,对于实时数据的处理则无能为力。
Storm是一个开源的分布式实时计算系统,可以简单、可靠地处理大量的数据流。
Storm有很多使用场景,如实时分析、在线机器学习、持续计算、分布式RPC、ETL等。
Storm支持水平扩展,具有高容错性,保证每个消息都会得到处理,而且处理速度很快(在一个小集群中,每个节点每秒可以处理数以百万计的消息)。
Storm的部署和运维都很便捷,而且更为重要的是可以使用任意编程语言来开发应用。
二、系统特性
1、编程模型简单
Storm为大数据的实时计算提供了一些简单优美的原语,这大大降低了开发并行实时处理任务的复杂性,帮助你快速、高效的开发应用。
2、可扩展
在Storm集群中真正运行Topology的主要有三个实体:工作进程、线程和任务。
Storm集群中的每台机器上都可以运行多个工作进程,每个工作进程又可创建多个线程,每个线程可以执行多个任务,任务是真正进行数据处理的实体,Spout、Bolt被开发出来就是作为一个或者多个任务的方式执行的。
3、高可靠性
Storm可以保证Spout发出的每条消息都能被“完全处理”,Spout发出的消息后续可能会触发产生成千上万条消息,可以形象地理解为一棵消息树,其中Spout发出的消息为树根,Storm会跟踪这个消息树的处理情况,只有这棵树中的所有消息被处理了才认为“完全处理”了,否则Spout会重发消息。
4、高容错性
如果在消息处理过程中出现了一些异常,Storm会重新部署这个出问题的处理单元。Storm保证一个处理单元永远运行(除非你显示的结束这个处理单元)。
5、支持多种编程语言
除了用Java实现Spout和Bolt,你还可以使用任何你熟悉的编程语言来完成这项工作,这一切得益于Storm所谓的多语言协议。
多语言协议是Storm内部的一种特殊协议,允许Spout或者Bolt使用标准输入和标准输出来进行消息传递,传递的消息为单行文本或者JSON编码的多行。
6、支持本地模式
Storm有一种“本地模式”,也就是在进程中模拟一个Storm集群的所有功能,以本地模式运行Topology跟在集群上运行Topology类似,这对于我们开发和测试来说非常有用。
7、高效
用ZeroMQ作为底层消息队列,保证消息能快速被处理。
8、运维和部署简单
Storm计算任务是以“拓扑”为基本单位的,每个拓扑完成特定的业务指标,拓扑中的每个逻辑业务节点实现特定的逻辑,并通过消息相互协作。
实际部署时,仅需要根据情况配置逻辑节点的并发数,而不需要关心部署到集群中的哪台机器,Storm支持动态增加节点但不会自动负载均衡。
9、图形化监控
图形界面,可以监控各个拓扑的信息,包括每个处理单元的状态和处理消息的数量。
三、类似系统
这里主要将Yahoo!S4和IBM InfoSphere Streams与Storm进行对比。
1、Yahoo!S4
(1)系统模型:通过把任务分解为尽可能小的处理单元,各处理单元之间形成流水线,从而提高并发度和吞吐量,处理单元的粒度由开发者自行把握,这点与Storm相似,不同的是S4内置的处理单元PE还可以处理count、join和aggregate等常见任务需求。
(2)开发:S4使用Java开发,模块高度可定制化。
(3)通信协议:S4节点间通信采用POJOs(Plain Old Java Objects)模式,底层通信协议采用UDP。
(4)高可用:S4集群中所有节点对等,无单点问题。
(5)运维与部署:S4不支持动态部署和动态增删节点,这两点Storm都支持。
2、IBM InfoSphere Streams
(1)系统模型:通过把任务分解为尽可能小的处理单元,各处理单元之间形成流水线,从而提高并发度和吞吐量,各处理单元只能完成预定的操作(如:join、merge等),强制限制每个处理单元的粒度。
(2)开发:定制的开发环境Eclipse-SPL(Steam Programming Language)。
(3)高可用:与S4和Storm一样支持故障转移。
(4)运维与部署:部署半自动化,支持动态增加节点,且根据负载自动均衡,这点Storm不支持。
四、应用模式
1、海量数据处理
Storm由于其高效、可靠、可扩展、易部署、高容错及实时性高等特点,对于海量数据的实时处理非常合适。
比如:统计网站的页面浏览量(如:Page View即PV)指标,Storm可以做到实时接收到点击数据流,并实时计算出结果。
2、中间状态存储与查询
对于Storm实时计算出的中间结果,可以实时写入MySQL或者HBase,以便于用户查询。
3、数据增量更新
对于PV指标的计算,如果直接实时修改HBase,则HBase压力会很大。
可以将数据在Storm内计算短暂的一段时间后,增量地合并到HBase,以牺牲一定查询结果的实时性换取HBase压力的减轻。
4、结合概率算法实时计算复杂指标
Storm实时处理数据,相对离线处理而言需要大量内存存储中间状态,为了减少内存的消耗,可以根据业务特点(如:Unique Visitor即UV)采用概率算法近似计算结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-09CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02