一、简要介绍
对于大数据的处理,在离线方面,Hadoop很完美地解决了,对于实时数据的处理则无能为力。
Storm是一个开源的分布式实时计算系统,可以简单、可靠地处理大量的数据流。
Storm有很多使用场景,如实时分析、在线机器学习、持续计算、分布式RPC、ETL等。
Storm支持水平扩展,具有高容错性,保证每个消息都会得到处理,而且处理速度很快(在一个小集群中,每个节点每秒可以处理数以百万计的消息)。
Storm的部署和运维都很便捷,而且更为重要的是可以使用任意编程语言来开发应用。
二、系统特性
1、编程模型简单
Storm为大数据的实时计算提供了一些简单优美的原语,这大大降低了开发并行实时处理任务的复杂性,帮助你快速、高效的开发应用。
2、可扩展
在Storm集群中真正运行Topology的主要有三个实体:工作进程、线程和任务。
Storm集群中的每台机器上都可以运行多个工作进程,每个工作进程又可创建多个线程,每个线程可以执行多个任务,任务是真正进行数据处理的实体,Spout、Bolt被开发出来就是作为一个或者多个任务的方式执行的。
3、高可靠性
Storm可以保证Spout发出的每条消息都能被“完全处理”,Spout发出的消息后续可能会触发产生成千上万条消息,可以形象地理解为一棵消息树,其中Spout发出的消息为树根,Storm会跟踪这个消息树的处理情况,只有这棵树中的所有消息被处理了才认为“完全处理”了,否则Spout会重发消息。
4、高容错性
如果在消息处理过程中出现了一些异常,Storm会重新部署这个出问题的处理单元。Storm保证一个处理单元永远运行(除非你显示的结束这个处理单元)。
5、支持多种编程语言
除了用Java实现Spout和Bolt,你还可以使用任何你熟悉的编程语言来完成这项工作,这一切得益于Storm所谓的多语言协议。
多语言协议是Storm内部的一种特殊协议,允许Spout或者Bolt使用标准输入和标准输出来进行消息传递,传递的消息为单行文本或者JSON编码的多行。
6、支持本地模式
Storm有一种“本地模式”,也就是在进程中模拟一个Storm集群的所有功能,以本地模式运行Topology跟在集群上运行Topology类似,这对于我们开发和测试来说非常有用。
7、高效
用ZeroMQ作为底层消息队列,保证消息能快速被处理。
8、运维和部署简单
Storm计算任务是以“拓扑”为基本单位的,每个拓扑完成特定的业务指标,拓扑中的每个逻辑业务节点实现特定的逻辑,并通过消息相互协作。
实际部署时,仅需要根据情况配置逻辑节点的并发数,而不需要关心部署到集群中的哪台机器,Storm支持动态增加节点但不会自动负载均衡。
9、图形化监控
图形界面,可以监控各个拓扑的信息,包括每个处理单元的状态和处理消息的数量。
三、类似系统
这里主要将Yahoo!S4和IBM InfoSphere Streams与Storm进行对比。
1、Yahoo!S4
(1)系统模型:通过把任务分解为尽可能小的处理单元,各处理单元之间形成流水线,从而提高并发度和吞吐量,处理单元的粒度由开发者自行把握,这点与Storm相似,不同的是S4内置的处理单元PE还可以处理count、join和aggregate等常见任务需求。
(2)开发:S4使用Java开发,模块高度可定制化。
(3)通信协议:S4节点间通信采用POJOs(Plain Old Java Objects)模式,底层通信协议采用UDP。
(4)高可用:S4集群中所有节点对等,无单点问题。
(5)运维与部署:S4不支持动态部署和动态增删节点,这两点Storm都支持。
2、IBM InfoSphere Streams
(1)系统模型:通过把任务分解为尽可能小的处理单元,各处理单元之间形成流水线,从而提高并发度和吞吐量,各处理单元只能完成预定的操作(如:join、merge等),强制限制每个处理单元的粒度。
(2)开发:定制的开发环境Eclipse-SPL(Steam Programming Language)。
(3)高可用:与S4和Storm一样支持故障转移。
(4)运维与部署:部署半自动化,支持动态增加节点,且根据负载自动均衡,这点Storm不支持。
四、应用模式
1、海量数据处理
Storm由于其高效、可靠、可扩展、易部署、高容错及实时性高等特点,对于海量数据的实时处理非常合适。
比如:统计网站的页面浏览量(如:Page View即PV)指标,Storm可以做到实时接收到点击数据流,并实时计算出结果。
2、中间状态存储与查询
对于Storm实时计算出的中间结果,可以实时写入MySQL或者HBase,以便于用户查询。
3、数据增量更新
对于PV指标的计算,如果直接实时修改HBase,则HBase压力会很大。
可以将数据在Storm内计算短暂的一段时间后,增量地合并到HBase,以牺牲一定查询结果的实时性换取HBase压力的减轻。
4、结合概率算法实时计算复杂指标
Storm实时处理数据,相对离线处理而言需要大量内存存储中间状态,为了减少内存的消耗,可以根据业务特点(如:Unique Visitor即UV)采用概率算法近似计算结果。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16