大数据需要建立规则和标准_数据分析师培训
作为在上世纪90年代就提出可穿戴设备概念的潘特兰教授,在大数据方面也享有卓著声誉,但他对大数据的看法,站在互联网业者的角度来看略显保守。因为他最为人称道的几个研究方向并非大数据的应用,而是个人数据采集规则,大数据安全和隐私等。不过这些在我们眼里看上去远比不上大数据发展优先的主题,并不妨碍他成为大数据领域首屈一指的专家。
潘特兰的学生中牛人辈出,有发明谷歌眼镜的,也有发明面部识别技术的。潘特兰本人则较为热衷于为大数据采集和应用制定规则,设立标准,甚至还在世界经济论坛这种重大场合为政治及经济人物提供各种与此有关的建议,可以看得出,大数据的规则和秩序是他更为看重的主题。这在当前整个社会对大数据的狂热情绪下,似乎显得有些违和,但谁也不敢肯定,几年后这未必就不是一个至高议题。
与那些喜欢做美食但自己不吃的厨师一样,潘特兰作为可穿戴设备教父,自己是不戴可穿戴设备的。虽然没有明说,但他对产自IT界的各种可穿戴设备所表现出的鄙夷,还是能够令人清晰感知到的。吃饭的时候他曾表达过这样的意思:不要相信那些现有的可穿戴设备,未来的大数据与之没有半点关系。而在现场视频中对各种市面上常见的可穿戴设备进行测试时,结果也确实与其态度有所吻合,所有加入测试的设备无一幸免地暴露出数据上的偏差,外观不错的小米手环误差率竟然达到了15%。
潘特兰将这些设备称之为简单、劣质,而他自己认可的可穿戴设备标准,则完全以用户体验为导向。他认为,那些设备光是能将人的步速和心跳频率测出来,本质上是没什么用的,用户需要让这些设备告诉自己,今天他的身体到底好不好,有没有什么欠缺,该如何进行调理等等。他所说的这种我们从未见过的场景,我想就是可穿戴设备和大数据紧密结合的产物了,很遗憾这种产品目前还没问世。
大数据的四个阶段,采集、存储、分析、应用,目前的发展水平似乎仍停留在采集阶段,但对此已有分歧了。大公司喜欢把合理诉求和自我诉求巧妙混合在一起,然后拿出来说事儿,他们对数据的渴望是贪婪的,恨不得能采集的都采集到,然后实现数据互通,最终实现产品化和商业化。
但要注意到的问题是,数据采集和使用仍然是应该有边界的。就拿BAT来说,腾讯把聊天记录作为大数据样本,阿里把交易信息作为大数据样本,百度把越权抓取的非公开信息作为大数据样本,从法理上来说都是存在一定风险的。个人网上信息的所有权在过去并不是个问题,未来一定会是个问题。
潘特兰为此提出的解决方案,则更显人性化,基于用户角度去考虑问题,较少考虑商业因素。他认为,每个人都有权使用自己的数据,选择进入或者退出网络,或者选择是否分享给别人。只有用户对数据应用和安全放心了,不觉得会有什么问题了,才会有真正的大数据。
其实很容易理解这些话的含义,大公司对数据的撷取是主动的,而用户对数据的被收集则是被动的,这对于一个未来的庞大产业而言,不可能不是一个问题。英国微电影“黑镜“中有个场景,在一个人出车祸死后,系统自动搜集此人在各种社交网络上的发言和分享,类似于人肉搜索,然后基于这些数据模仿出其语言,再通过逼真的模拟语音,实现与未亡人进行跨阴阳两界对话的效果。这个场景相当令人震撼,也相当令人担忧。
如果大数据应用到这个地步,必然会出现不良后果,这会反过头来损害大数据产业的发展。潘特兰说的那些话意思在于,你让用户自己去选择个人数据的应用,赋予其主动权,这才是对大数据发展更有好处的事情。
例如,用户如果认为自己的身体数据并没什么隐私问题,你给他退出的权利,他会主动给你上传更多的优质数据,而这些数据是公司们想通过技术手段收集,也收集不来的。可穿戴设备与这种兼顾了用户权利的数据结合,才会达到他心目中的理想效果。
其实我一直都有个看法,通过大数据预测未来是一件不靠谱的事情,不管你的应用技术如何发达,IT设备如何高效,这本质上是一种违背能量守恒定律的臆想,如永动机一样永远不能实现。不过,在预测未来之外,大数据可做的事情其实要比我们想象的更多,如石油带动能源革命一样,会对未来的人类生活产生重大影响。
这个事情需要有序推进还是野蛮生长,着实是值得深思的问题。由于数据维度的不同,文化习惯的差异,大数据之间未来发展到应用阶段时,会呈现出严重的不同步现象,出现失真,解决这个问题的关键,在于规则和标准。而为大数据建立规则和标准,似乎正是潘特兰教授真正心向往之的一件事,因为他知道,这可能会影响到一个革命性产业在未来的走向。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21