大数据的OLAP技术_数据分析师培训
在互联网的技术浪潮冲击下,不少传统企业也纷纷涉水大数据技术。以笔者经历的两个项目为例,传统企业与互联网公司相比有两个特点:
①企业应用比较笨重和复杂,云计算等基础架构平台,互联网需要的是水平规模化扩展,但对传统企业来讲,更需要的是垂直一体化部署复杂的依赖并且方便重用;
②企业数据,包括关系型的交易数据、日志、文档、电子邮件等等,但总体还是结构化数据占多数;互联网则是非结构化数据为主,如网页、图片、服务器日志等,在网页搜索或广告推荐等领域,高维数据分析比较常见。
和企业私有云的架构一样,对企业的大数据平台,我们很难直接去简单复制互联网的海量存储或计算平台技术,如Hadoop、HBase、Spark;因为这些技术搭建的只是一个数据的基础设施,要在传统企业实施“大数据平台”,我们的思路是,如何将传统的商业智能运行在“大数据平台”之上。
OLAP – 联机分析
OLAP联机分析是从多维信息、针对特定问题的联机数据进行访问和分析的技术。从分析的角度出发,数据源需提供以下操作支持:
下面是一个数据表示例:
通常OLAP的多维数据源由数据方(Cube)提供,关系型数据库或数据仓库都能提供数据方的设计,相对于数据库,数据仓库是昂贵的软硬件解决方案,而互联网普遍采用基于Hadoop技术构建的海量数据处理平台,在这里是否可以作为数据仓库的替代品呢?其核心技术还是,如何基于Hadoop来构建数据方。
Pre-aggregate – 预聚合数据
对数据库来说,数据聚合通常是实时的。实时聚合的好处是灵活,可以对任意列进行查询,缺点是CPU、I/O开销较大,数据量大时查询缓慢,吞吐量低;而对Hadoop这样的非实时计算、大量数据处理的平台来说,很适合对数据进行预聚合处理,预聚合的优点是查询快速高效,但缺点是无法灵活查询,比如未进行聚合处理的数据。
在基于Hadoop进行预聚合处理上,Adobe提供了一些经验:
这个步骤的目的是理解数据并且构建出领域模型,包括:
下面是Adobe SiteCatalyst的设计参考,源数据是一条日志,使用reports.json来描述整个设计:
数据采集优化策略
对历史数据,采用大量数据批处理来提高吞吐量,对新增的增量数据,尽量达到低延时查询。一些优化策略包括:
对输入进行条件过滤:
提升Map的任务数:
数据处理
数据处理的过程包括读取源数据、预聚合并且生成可供查询的数据表,对OLAP而言,需要对数据进行以下处理:
以下是Adobe在线数据处理设计和SQL查询的映射:
在reports.json中定义了触发各个处理的类:
整个处理过程如下:
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20