大数据的OLAP技术_数据分析师培训
在互联网的技术浪潮冲击下,不少传统企业也纷纷涉水大数据技术。以笔者经历的两个项目为例,传统企业与互联网公司相比有两个特点:
①企业应用比较笨重和复杂,云计算等基础架构平台,互联网需要的是水平规模化扩展,但对传统企业来讲,更需要的是垂直一体化部署复杂的依赖并且方便重用;
②企业数据,包括关系型的交易数据、日志、文档、电子邮件等等,但总体还是结构化数据占多数;互联网则是非结构化数据为主,如网页、图片、服务器日志等,在网页搜索或广告推荐等领域,高维数据分析比较常见。
和企业私有云的架构一样,对企业的大数据平台,我们很难直接去简单复制互联网的海量存储或计算平台技术,如Hadoop、HBase、Spark;因为这些技术搭建的只是一个数据的基础设施,要在传统企业实施“大数据平台”,我们的思路是,如何将传统的商业智能运行在“大数据平台”之上。
OLAP – 联机分析
OLAP联机分析是从多维信息、针对特定问题的联机数据进行访问和分析的技术。从分析的角度出发,数据源需提供以下操作支持:
下面是一个数据表示例:
通常OLAP的多维数据源由数据方(Cube)提供,关系型数据库或数据仓库都能提供数据方的设计,相对于数据库,数据仓库是昂贵的软硬件解决方案,而互联网普遍采用基于Hadoop技术构建的海量数据处理平台,在这里是否可以作为数据仓库的替代品呢?其核心技术还是,如何基于Hadoop来构建数据方。
Pre-aggregate – 预聚合数据
对数据库来说,数据聚合通常是实时的。实时聚合的好处是灵活,可以对任意列进行查询,缺点是CPU、I/O开销较大,数据量大时查询缓慢,吞吐量低;而对Hadoop这样的非实时计算、大量数据处理的平台来说,很适合对数据进行预聚合处理,预聚合的优点是查询快速高效,但缺点是无法灵活查询,比如未进行聚合处理的数据。
在基于Hadoop进行预聚合处理上,Adobe提供了一些经验:
这个步骤的目的是理解数据并且构建出领域模型,包括:
下面是Adobe SiteCatalyst的设计参考,源数据是一条日志,使用reports.json来描述整个设计:
数据采集优化策略
对历史数据,采用大量数据批处理来提高吞吐量,对新增的增量数据,尽量达到低延时查询。一些优化策略包括:
对输入进行条件过滤:
提升Map的任务数:
数据处理
数据处理的过程包括读取源数据、预聚合并且生成可供查询的数据表,对OLAP而言,需要对数据进行以下处理:
以下是Adobe在线数据处理设计和SQL查询的映射:
在reports.json中定义了触发各个处理的类:
整个处理过程如下:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30