大数据不能替代理性思考_数据分析师培训
有关大数据的讨论,几年间已经从早期的概念发展到今天的应用,应用领域也已从早期的商业领域拓展到学术领域、政策领域。首先,大数据特殊之处在于其数据来自于全体,而不再是部分数据的采样。采样数据无论如何抽取都会有抽样偏差,进而可能导致结果的偏差,在这个意义上,大数据时代,可以依靠强大的数据处理能力处理全部的数据,这是多么令人兴奋。其次,数据作为知识的重要来源,抽样调查数据也好,二手文献数据也好,人们均是从中进行分析并获取知识,但这类数据中包含的变量总归有限,知识的获取也因而受限,而大数据将大量结构复杂、类型众多的异构数据结合在一起,构成有无限组合可能的数据集合,使用计算能力可以无限扩充的云计算来进行,作为知识生产来源的大数据的数量级别进而达到PB级,因此其中潜藏的知识不知几何,人们获取知识的能力也可能会大大增加。
大数据的先行者通过各种数学和物理算法在大数据中掘金,一些人类过去未能发现的潜在关联被发现和应用,并取得了瞩目的成就和进展。基于此,大数据理论基本都提出:基于大数据发掘出的“有效”相关性关系即可进行预测;有效性不需要知道“为什么”,知道“是什么”即可。数据和算法驱动研究成为大数据研究的主要范式。我相信,大数据的无预设前提的数据驱动的相关关系的挖掘,有着解放人类被理论局限性束缚的手脚的功用。但是,我们会不会走出一个陷阱,又踏入另外一个陷阱呢?
我首先想讨论的第一个问题是,来自于全体数据的结论就是可靠的吗?在我参加的一次博士论文答辩中,答辩人报告,她使用全国人口普查数据发现,老年人的健康与财富之间的关系是:老年人健康水平越低则财富越多,或者反过来说,老年人财富越多越不健康。评委当时一片哗然。事实上这是合情理的,其机理就是,一个越不健康的老人,就需要越多越好的医疗资源才能存活,而越多的财富能保证其越多越好的医疗资源。因此,相同的不健康状况的老人中,钱越多则具有越高的生存概率。换个角度看,不健康的老人中,没钱的死了,有钱的活下来了;越是不健康的老人中,只有越有钱的才能存活。因此,全体数据的结果是:老人的财富与健康呈现出负相关。这是来自于全体数据的结果,显然是合理的,但其显示的相关关系却有些荒谬。
这样就导致了我的第二个问题:追求这样的相关关系有价值吗?这样的相关关系可信吗?我想读者都不会相信,健康与财富呈现出的负相关是正确的相关关系,而出于理性,相信的恰恰是健康与财富应该呈现出正相关的关系。在这里,社会实体所表现出来的模式显然违背了我们对社会的理论认识。我们都知道,理论是现实在头脑中的反映,但是这个例子告诉我们,人类通过理性建构的理论并非社会现实在头脑中的简单反映。这里,我提出一对概念来阐述我的观点。变量之间的关系有两种表现形式,一种是社会实体的表现形式(real pattern),一种是社会理论的表现形式(relation pattern)。前者是社会实体直接体现出来的变量和变量之间的相关关系,后者是学者通过理性思考建构的理论空间的因果关系。变量在社会实体上表现的相关关系,由于社会实体的选择性偏误(例子中是由死亡的非随机性造成),导致了相关关系的扭曲,甚至相反。因此,人们宁愿相信自己的理性,而不愿只是机械地接受社会实体表现出来的模式。
人类的理性,使得我们知晓变量间在社会实体上的表现形式并不必然等于社会理论上的表现形式。对大数据使用数据驱动,能获得的仅仅是社会实体上的表现形式,这可能与理论空间的因果关系一致,也可能完全相反。因此,放弃人的理性思考,放弃获得具有严密因果逻辑的理论上的表现形式,使用找到相关关系即可的大数据分析范式——数据驱动,在我看来是无法接受的。大数据的分析,仍然需要理论驱动和理论理解所建构的因果关系。因此,无论如何精巧的大数据分析工具的使用,都不能代替生产工具的人的理性思考。“武器的批判”并不能取代“批判的武器”。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21