你确定要鸡蛋碰石头吗?关于大数据的三大误区
随着整个行业对大数据的兴趣越来越大,我最爱的话题之一,我在2013年做过的大数据的公众演讲超过我职业生涯中的任何往年。我在行业大会、活动,大学以及EMC内部共做过许多次演讲。在这些演讲中一次又一次地接触到了一大堆关于大数据的评论,提问以及错误的理解。我相信将我听到的分享给大家会很有用。
以下是对于大数据的三大误区:
1. 最重要的,是关于大数据本身的大小
大数据主要是数据的大小,因为大数据就是大的,对吗?其实,并不完全是。哈佛的定量社科学院的Gary King说。当然,如今的数据处理量要远超过去(这里是指”3Vs”的量-量,多变性及速度),但如果人们只关注于GB、TB或PB,他们将仅仅视大数据为关于存储和科技的问题。尽管这也是绝对重要的,但大数据的更突出的几个方面通常是另外两个V:多变性(Variety)和速度(Velocity)。速度指的是数据流及非常快的数据,数据积累或进入数据仓库时的低延迟,以使人们可以更加快速地(或者甚至自动地)做出决定。数据流的确是个大问题,但是对我来说,其多变性是3V当中最有趣的。
上面显示的这些图标正是大数据产生的来源。实际上,这正说明了一个哲学问题—不仅仅是大数据改变了,更多的是,数据的定义本身已经发生了变化。也就是说,大多数的人认为数据就是成行成列的数据,如Excel表格,RDBMS数据库,或存储着TB级结构化数据的数据仓库。这些的确没有错,大数据主要是有关半结构化数据和非结构化数据。 大数据包含了所有人们并不认为是数据的所有其他的事物,如RFID芯片,智能手机的地理空间传感器,图像,视频文件,点击流,语音识别数据以及这些数据的元数据。 当然,我们需要找到有效的方法来存储大量的数据,然而我发现,当人们开始抓取数据的多变性及其速度,他们也开始寻找更加创新的方式来使用这些数据。
2. 你确定要鸡蛋碰石头吗?
“好吧,但是为什么我一定需要新的工具?我不能用原来的软件工具来分析大数据吗?”我们在讨论使用Hadoop去排列成百上千的非结构数据输入。讨论中有位听众提问,为什么他不能简单地使用SPSS来分析大量的文本语料库。事实上,一旦你领会了#1中的内容,那么你将意识到你需要一个可以理解、存储和分析不同数据输入(图像,点击流,视频,声纹,元数据,XML,等),并且可以并行处理他们的新的工具。这就是为什么内存中的桌面工具足以处理本地内存中的分析(SPSS,R,WEKA,等)却无法处理大量的大数据源。所以我们需要新的技术来管理这些各不相干的数据源,并以并行的原则管理他们。
3. 不完整的数据质量代表大数据毫无意义
“是的,那么大数据,数据的质量会怎么样呢?是不是意味着更大规模的“无用出入(GIGO)”?
大数据也一定可能会乱,而数据质量对任何分析都非常重要。然而,关键是要记住数据将不可避免地混乱。即,会有很多杂乱,各种异常情况,以及不一致性。而重要的是要把重点放在数据的数量和种类,以及它们可否可修剪并用以做有价值的分析。换句话说,在这些混乱之中要寻找某种信号。在某些情况下,组织可能要解析和清理大量的数据源,而在其他情况下,这些也可能不太重要。可以考虑谷歌趋势分析。
谷歌趋势分析显示人们搜索的最热门事情,如整个2013年在谷歌搜索的最多的事情,如上图所示照片。这需要大量的存储空间,处理能力以及强大的分析技术以从搜索中筛选并排名。这是使用大数据而忽略GIGO的一个好例子。
从这个观点来看,许多人们会说“哦!这听起来的确是大的改变”是的!正如我的一个同事所说,可以用大数据的名字或动词意义做一个区分。也就是说,作为名词,把大数据仅仅当作需要被存储和安置的“非常多的东西”。作为动词,大数据就意味着动作。这个阵营的人们视大数据为破坏性的力量,是改变他们的操作方式的动力。利用大数据以创造性的方式测试好点子,从而以分析的方式解决业务问题,如进行A/B测试—请参考谷歌测试50色调的蓝色,去寻找人们最愿意点击的Gmail用户,而不是仅凭营销经理的猜测。或者想办法衡量没法衡量的事情,比如公司和大学找更好的方式来实现图像归类的自动化。以新的方式探索新点子—以数据来回答“假如……”的问题。
在这个竞赛中,那些把大数据视作动词的组织将是最大赢家!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31