京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据对社会创新的作用_数据分析师培训
“大数据”一语用来描述数据的日益增长和我们不断加强的有效利用数据的的能力,并且大数据已经在科学和商业领域获得了极大的应用。但是在社会领域“大数据”的应用却是滞后的。
大数据所提供的信息和帮助解决社会问题之间存在巨大的鸿沟。有一些社会问题可以通过大数据来解决,例如利用交通流量数据来缓解高速公路交通拥堵问题;但另一些社会问题的解决却没那么容易,例如如何利用数据来解决无家可归者的问题,或者贩卖人口的问题?
社会问题之所以复杂,是因为涉及的利益相关者众多,所以目标也是多重的。不像技术问题一样,目标往往是单一的,比如说优化。但在社会问题上,到底什么叫“优化”呢?尤其是社会问题往往涉及政府的公共政策和行政机构的介入,使得社会问题又不单纯是社会问题,而成为政治问题。
大数据使用的问题
另一个问题与大数据本身的使用有关系。事实上,但切入一个社会问题时,你可能会遇上不上数字,但这些数字往往不是结构化的,很难被调用。结构化的大数据相对缺乏有四个主要的原因:数据淹没在行政系统、数据管理标准缺乏、数据往往不可靠以及数据可能导致意想不到的后果。
比如说,全球每年被贩卖的人口估计高达3000万人次,这是个约320亿美元的“产业”。要打击人口贩子,大数据当然可以帮忙。但问题是人口贩子用的手机、社交媒体、在线广告和其他网络平台产生的数据,并没有被系统的收集,更遑论共享给相关的组织。当然原始数据本身的收集就很难,并且各个组织之间的数据共享做得也不到位。
更糟的是,打击人口贩卖的各家机构经常互相争夺的稀缺资源:无论资金、捐赠还是来自媒体和社会的认同。因为这种竞争,各机构之间的数据共享几乎不可能。例如,北极星项目(the Polaris Project)一直致力于打击人口贩卖。2003年至2006年,Polaris为被贩卖的幸存者提供热线电话。2007年,美国卫生和公众服务部选定Polaris作为全国首个国家贩卖人口资源热线。多年来,Polaris记录了75000多个呼叫;然而,获得这些数据受到限制,其可靠性和来源鲜为人知。
如果Polaris信息向公众开放,并结合其他数据源,如经济指标、运输路线、教育统计和受害者服务等,能更加有效帮助打击人口贩卖。2012年Google Giving(谷歌捐赠)授予Polaris和另外两家国际反人口贩卖组织300万美元以资助将他们三条电话热线收集到的数据予以整合,并发展为国际热线。目前,三个组织都已在全球人口贩运热线网络(Global Human Trafficking Hotline Network)下联合起来。这是一个积极的迹象,但是这次的合作成果仍有待观察。
增加大数据使用的步骤
大数据于决策时充分了解信息以帮助解决世界上最棘手的社会问题有着巨大潜力。但是要做到这一点,有关数据的收集、组织和分析的问题必须首先得到解决。下列四项建议有助于创建数据集,并以此为据进行决策。
首先,在关键问题上建立全球数据银行。全球需要对复杂的问题,如贩卖人口、全球饥饿和贫穷创建大型数据银行。数据银行有处理不同数据格式和描述数据集的元数据的能力。为了做到这一点,促进专题问题的数据共享需要创建多部门的联盟。
其次,让公民参与和公民科学。大数据不是专业人士的地盘。公民也可以参与帮助创建和分析这些数据集。随着通过开放的数据平台数据激增,越来越多的公民通过“公民科学”来开创新理念和产品。
再次,建立数据管理人和分析人的框架。今天,我们不仅缺乏可以解决社会问题的数据管理人和分析师,对于接受必要培训和能力的现有人员,我们的途径也是有限。在大多数情况下,我们将数据科学留给了科学界和商界。社会科学往往给学生提供简单的统计基础知识。如果我们要利用大数据,这种做法是不可接受的。我们需要让学生和分析人员掌握必要技能,以管理数据同时也创建大型数据集。我们要开发课程,让学生了解数据的组织、保存、可视化、搜索和检索以及使用。除了这些技能,要让学生能更多地思考能利用数据做什么是至关重要。考虑数据集之间的网络关系,以及如何发现数据集中的潜在模式,是需要开发的能力。
最后,促进虚拟实验平台。为了提高我们对如何使用大数据解决社会问题的理解,我们需要推动更多的实验。虚拟实验平台,允许个人交流思想、与别人的想法交流、携手合作以找到解决问题的方法或利用机会,它能够将各个感兴趣的相关方聚集在一起共同打造大型数据集、开发创新算法来分析和可视化的数据,并开发新知识。如果我们要使用大数据解决社会挑战,虚拟实验平台是必不可少的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27