京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据对社会创新的作用_数据分析师培训
“大数据”一语用来描述数据的日益增长和我们不断加强的有效利用数据的的能力,并且大数据已经在科学和商业领域获得了极大的应用。但是在社会领域“大数据”的应用却是滞后的。
大数据所提供的信息和帮助解决社会问题之间存在巨大的鸿沟。有一些社会问题可以通过大数据来解决,例如利用交通流量数据来缓解高速公路交通拥堵问题;但另一些社会问题的解决却没那么容易,例如如何利用数据来解决无家可归者的问题,或者贩卖人口的问题?
社会问题之所以复杂,是因为涉及的利益相关者众多,所以目标也是多重的。不像技术问题一样,目标往往是单一的,比如说优化。但在社会问题上,到底什么叫“优化”呢?尤其是社会问题往往涉及政府的公共政策和行政机构的介入,使得社会问题又不单纯是社会问题,而成为政治问题。
大数据使用的问题
另一个问题与大数据本身的使用有关系。事实上,但切入一个社会问题时,你可能会遇上不上数字,但这些数字往往不是结构化的,很难被调用。结构化的大数据相对缺乏有四个主要的原因:数据淹没在行政系统、数据管理标准缺乏、数据往往不可靠以及数据可能导致意想不到的后果。
比如说,全球每年被贩卖的人口估计高达3000万人次,这是个约320亿美元的“产业”。要打击人口贩子,大数据当然可以帮忙。但问题是人口贩子用的手机、社交媒体、在线广告和其他网络平台产生的数据,并没有被系统的收集,更遑论共享给相关的组织。当然原始数据本身的收集就很难,并且各个组织之间的数据共享做得也不到位。
更糟的是,打击人口贩卖的各家机构经常互相争夺的稀缺资源:无论资金、捐赠还是来自媒体和社会的认同。因为这种竞争,各机构之间的数据共享几乎不可能。例如,北极星项目(the Polaris Project)一直致力于打击人口贩卖。2003年至2006年,Polaris为被贩卖的幸存者提供热线电话。2007年,美国卫生和公众服务部选定Polaris作为全国首个国家贩卖人口资源热线。多年来,Polaris记录了75000多个呼叫;然而,获得这些数据受到限制,其可靠性和来源鲜为人知。
如果Polaris信息向公众开放,并结合其他数据源,如经济指标、运输路线、教育统计和受害者服务等,能更加有效帮助打击人口贩卖。2012年Google Giving(谷歌捐赠)授予Polaris和另外两家国际反人口贩卖组织300万美元以资助将他们三条电话热线收集到的数据予以整合,并发展为国际热线。目前,三个组织都已在全球人口贩运热线网络(Global Human Trafficking Hotline Network)下联合起来。这是一个积极的迹象,但是这次的合作成果仍有待观察。
增加大数据使用的步骤
大数据于决策时充分了解信息以帮助解决世界上最棘手的社会问题有着巨大潜力。但是要做到这一点,有关数据的收集、组织和分析的问题必须首先得到解决。下列四项建议有助于创建数据集,并以此为据进行决策。
首先,在关键问题上建立全球数据银行。全球需要对复杂的问题,如贩卖人口、全球饥饿和贫穷创建大型数据银行。数据银行有处理不同数据格式和描述数据集的元数据的能力。为了做到这一点,促进专题问题的数据共享需要创建多部门的联盟。
其次,让公民参与和公民科学。大数据不是专业人士的地盘。公民也可以参与帮助创建和分析这些数据集。随着通过开放的数据平台数据激增,越来越多的公民通过“公民科学”来开创新理念和产品。
再次,建立数据管理人和分析人的框架。今天,我们不仅缺乏可以解决社会问题的数据管理人和分析师,对于接受必要培训和能力的现有人员,我们的途径也是有限。在大多数情况下,我们将数据科学留给了科学界和商界。社会科学往往给学生提供简单的统计基础知识。如果我们要利用大数据,这种做法是不可接受的。我们需要让学生和分析人员掌握必要技能,以管理数据同时也创建大型数据集。我们要开发课程,让学生了解数据的组织、保存、可视化、搜索和检索以及使用。除了这些技能,要让学生能更多地思考能利用数据做什么是至关重要。考虑数据集之间的网络关系,以及如何发现数据集中的潜在模式,是需要开发的能力。
最后,促进虚拟实验平台。为了提高我们对如何使用大数据解决社会问题的理解,我们需要推动更多的实验。虚拟实验平台,允许个人交流思想、与别人的想法交流、携手合作以找到解决问题的方法或利用机会,它能够将各个感兴趣的相关方聚集在一起共同打造大型数据集、开发创新算法来分析和可视化的数据,并开发新知识。如果我们要使用大数据解决社会挑战,虚拟实验平台是必不可少的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26