大数据透析P2P平台跑路真正原因_数据分析师培训
跑路,P2P平台难以摆脱的梦魇,到底是“道德败坏”还是“大势所趋”?只是揣测是不行的,与真相帝拿起显微镜,透析一下P2P平台跑路的真正原因。
一、借款人态度
真相帝通过对接近50位真实借款人(限于时间和资源有限)的调研,类型大致可以分为下面几类:
1.无所谓,只要借款人能拿到借款,透露也没什么关系,有真实的实体经营,真实的资料,你来实地考察还能给他打打广告,但这只占6%的比例。
2.可以公开,但不涉及隐私,也就是说借款资料什么的完全可以公开,但只要不涉及借款人的联系方式,不知道借款人是谁就可以,这类人群比重将近66%。
3.完全不公开,他们的理念是借款人只是和投资人发生了借贷关系,没必要把他借贷的事情搞的全世界都知道。此类型占到28%。
4.自融平台不加讨论,不真实,更没有透明可言。
由上面数据得出结论。相对来说只要是真实借款人,只要不涉及自己私人信息。借款信息的披露他们是持无所谓状态,他们要的只是能借款,解决自己的问题。
二、平台借款信息的披露
1.20%的平台对于借款用户的信息是完全对外公布的。
2.50%的平台对于借款用户的信息是没有对外公布的。
3.20%的平台是资料不全,或解释没有放上去,资料公司是有的。
4.10%的平台有资料,但填充假的可以。甚至评估15万的车能贷款20万。
真相帝调研了将近100家平台,信息公布完整的多数为上市公司参股平台,以及真正有心做好P2P业务的平台,占20%。其他多为公布不完全或者不公布,不排除排名前10的平台,信息为什么不公布,投资人可以发挥无限的想象力。作者不做评论与猜想。
三、投资人对于借款信息的态度
真相帝对于投资人的调研结果真的是啼笑皆非,下面看看你们属于那一种。
1.跟风型:看到身边人投资了就去投资,不管项目利率的高低,不管项目的真实性,死跟,对项目真实性和透明完全没有概念。
2.盲目崇拜型:对于那种数一数二的平台,盲目的崇拜投资,无谓时间长短,无谓项目利率高低,无谓项目的真实与否,信平台得永生,管有没有资料呢。
3.迷茫型:身边有个同事,问真相帝哪个平台安全,真相帝随口说了句HL可以,然后,然后就砸了2万买进一个年化8%的标,而且是长期一次性。
4.电脑文盲型:听说哪个平台可以,然后一次性全部投资,真相帝问为什么,答案是自己不会操作电脑,请人操作,自己学起来麻烦。
5.投机型:这类人有丰富的投资经验,只限于新平台捞一把就走的,属于玩心理战术,对于平台透明不透明关系不大。
6.业内投资人:精通各种玩法,活跃于多个中型平台,他们大多求稳,会考究平台实力,项目真实,资料透明与否。
投资人的比重真相帝不说,估计大家心理有数。第1、2、3、4类占人群比例的77%,剩下23%才是第5和第6类。
大家可以看的出来。除了投机者和业内投资人对于项目有个最起码的认识外,其他人群完全没有投资的风险意识,好像项目的透明度和自己没有关系。
这只是一组数据,但是可以推衍出太多的问题。有人曾说过,透明度是平台与投资人的博弈,可在真相帝看来不是,压根就没出现过博,何来博弈之说。也有人说过,平台强势,投资人弱势,可笔者看来,不是投资人弱势,是他们不懂如何强势,不管多强的平台,资金链失衡,它还怎么活?
平台不公开借款人相关借款资料,投资人要求了吗?不要一味只说平台如何,改不改是平台的事,要不要求是你们的事,金子在自己手里难道还没有主动权?
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21