Spark成为大数据分析领域新核心的五个理由
在过去几年当中,随着Hadoop逐步成为大数据处理领域的主导性解决思路,原本存在的诸多争议也开始尘埃落定。首先,Hadoop分布式文件系统是处理大数据的正确存储平台。其次,YARN是大数据环境下理想的资源分配与管理框架选项。第三也是最重要的一点,没有哪套单一处理框架能够解决所有问题。虽然MapReduce确实是一项了不起的技术成果,但仍然不足以成为百试百灵的特效药。
依赖于Hadoop的企业需要借助一系列分析型基础设施与流程以找到与各类关键性问题相关的结论与解答。企业客户需要数据准备、描述性分析、搜索、预测性分析以及机器学习与图形处理等更为先进的功能。与此同时,企业还需要一套能够满足其实际需求的工具集,允许他们充分运用目前已经具备的各类技能及其它资源。就目前而言,并没有哪种标准化单一处理框架足以提供这样的效果。从这个角度出发,Spark的优势恰好得到了完美体现。
尽管Spark还仅仅是个相对年轻的数据项目,但其能够满足前面提到的全部需求,甚至可以做得更多。在今天的文章中,我们将列举五大理由,证明为什么由Spark领衔的时代已经来临。
1. Spark让高级分析由理想变为现实
尽管多数大型创新型企业正在努力拓展其高级分析能力,但在最近于纽约召开的一次大数据分析会议上,只有20%的与会者表示目前正在企业内部部署高级分析解决方案。另外80%与会者反映其仍然只具备简单的数据准备与基本分析能力。在这些企业中,只有极少数数据科学家开始将大量时间用于实现并管理描述性分析机制。
Spark项目提供的框架能够让高级分析的开箱即用目标成为现实。这套框架当中包含众多工具,例如查询加速、机器学习库、图形处理引擎以及流分析引擎等等。对于企业而言,即使拥有极为杰出的数据科学家人才(当然这一前提同样很难实现),他们也几乎不可能通过MapReduce实现上述分析目标。除此之外,Spark还提供易于使用且速度惊人的预置库。在此基础之上,数据科学家们将被解放出来,从而将主要精力集中在数据准备及质量控制之外的、更为关键的事务身上。有了Spark的协助,他们甚至能够确保对分析结果做出正确的解释。
2. Spark让一切更为简便
长久以来,Hadoop面临的最大难题就是使用难度过高,企业甚至很难找到有能力打理Hadoop的人才。虽然随着新版本的不断出炉,如今Hadoop在便捷性与功能水平方面已经得到了长足进步,但针对难度的诟病之声依然不绝于耳。相较于强制要求用户了解一系列高复杂性知识背景,例如Java与MapReduce编程模式,Spark项目则在设计思路上保证了每一位了解数据库及一定程度脚本技能(使用Python或者Scala语言)的用户都能够轻松上手。在这种情况下,企业能够更顺畅地找到有能力理解其数据以及相关处理工具的招聘对象。此外,供应商还能够快速为其开发出分析解决方案,并在短时间内将创新型成果交付至客户手中。
3. Spark提供多种语言选项
在讨论这一话题时,我们不禁要问:如果SQL事实上并不存在,那么我们是否会为了应对大数据分析挑战而发明SQL这样一种语言?答案恐怕是否定的——至少不会仅仅只发明SQL。我们当然希望能够根据具体问题的不同而拥有更多更为灵活的选项,通过多种角度实现数据整理与检索,并以更为高效的方式将数据移动到分析框架当中。Spark就抛开了一切以SQL为中心的僵化思路,将通往数据宝库的大门向最快、最精致的分析手段敞开,这种不畏数据与业务挑战的解决思路确实值得赞赏。
4. Spark加快结果整理速度
随着业务发展步伐的不断加快,企业对于实时分析结果的需要也变得愈发迫切。Spark项目提供的并发内存内处理机制能够带来数倍于其它采用磁盘访问方式的解决方案的结果交付速度。传统方案带来的高延迟水平会严重拖慢增量分析及业务流程的处理速度,并使以此为基础的运营活动难于开展。随着更多供应商开始利用Spark构建应用程序,分析任务流程的执行效率将得到极大提高。分析结果的快速交付意味着分析人士能够反复验证自己的论断,给出更为精确且完整的答案。总而言之,Spark项目让分析师们将精力集中在核心工作上:更快更好地为难题找出解答。
5. Spark对于Hadoop供应商选择不设硬性要求
目前各大Hadoop发行版本都能够支持Spark,其理由也非常充分。Spark是一套中立性解决方案,即不会将用户绑定到任何一家供应商身上。由于Spark属于开源项目,因此企业客户能够分析地构建Spark分析基础设施而不必担心其是否会受到某些Hadoop供应商在特定发展思路方面的挟持。如果客户决定转移平台,其分析数据也能够顺利实现迁移。
Spark项目蕴含着巨大的能量,而且已经在短时间内经受住了考验、证明其有能力密切匹配大数据分析业务的实际要求。目前我们所迎来的还仅仅是“Spark时代”的开端。随着企业越来越多地发挥Spark项目中的潜能,我们将逐步见证Spark在任意大数据分析环境下巩固其核心技术地位,围绕其建立起的生态系统也将继续茁壮成长。如果企业客户希望认真考量高级实时分析技术的可行性,那么将Spark引入自身大数据集几乎已经成为一种必然。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31