物联网与大数据运用网络和数据共同服务于应用
现在有许多公司拚命投资数据科学家、数据存储、数据分析软件,但其中许多投资都近年来,随着互联网的发展,大数据逐渐成为产业界和学术界一致关注的热点技术。从大数据的定义来看,指的是所涉及的数据量规模巨大到无法通过目前的主流软件工具在合理的时间内达到撷取、管理、处理并基于此提供有用信息的目的。大数据具有4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Veracity(真实性)。
相比传统的互联网,在物联网中,对大数据技术具有更高的要求,主要体现在以下几方面:
(1)物联网中的数据量更大:物联网的最主要特征之一是节点的海量性,除了人和服务器之外,物品、设备、传感网等都是物联网的组成节点视频会议,其数量规模远大于互联网;同时,物联网节点的数据生成频率远高于互联网,如传感节点多数处于全时工作状态,数据流源源不断。
(2)物联网中的数据速率更高:一方面,物联网中数据海量性必然要求骨干网汇聚更多的数据,数据的传输速率要求更高;另一方面,由于物联网与真实物理世界直接关联,很多情况下需要实时访问、控制相应的节点和设备,因此需要高数据传输速率来支持相应的实时性。
(3)物联网中的数据更加多样化:物联网涉及的应用范围广泛,从智慧城市、智慧交通、智慧物流、商品溯源,到智能家居、智慧医疗、安防监控等,无一不是物联网应用范畴;在不同领域、不同行业,需要面对不同类型、不同格式的应用数据,因此物联网中数据多样性更为突出。
(4)物联网对数据真实性的要求更高:物联网是真实物理世界与虚拟信息世界的结合,其对数据的处理以及基于此进行的决策将直接影响物理世界,物联网中数据的真实性显得尤为重要。
综合以上分析可以看出,大数据是物联网中必须的关键技术,二者的结合能够为物联网系统和应用的发展带来更好的技术基础。以智能安防应用为例,智能安防行业是典型的大数据与物联网相结合的应用场景,物联网技术的普及应用使安防从过去简单的安全防护系统向城市综合化体系演变,涵盖众多的领域,特别是针对重要场所,如机场、银行、地铁、车站、水电气厂、道路桥梁等场所,视频会议系统引入物联网技术后可以通过无线移动、跟踪定位等手段建立全方位的立体防护。智能安防行业需求已从大面积监控布点转变为注重视频智能预警、分析和实战,迫切需要利用大数据技术从海量的视频数据中进行规律预测、情境分析、串并侦查、时空分析等。
由此可见,智能化安防技术的主要内涵是其相关内容和服务的信息化,图像、视频的传输和存储,数据的存储和处理等等。在智能安防领域,数据的产生、存储和处理是智能安防解决方案的基础,只有采集足够有价值的安防信息,通过大数据分析以及综合研判模型,才能制定智能安防决策。同时,大数据处理能够更好地指出智能安防解决方案中存在的问题,从而有针对性地提升智能安防产品服务质量。
如何更好地将大数据技术应用于物联网应用中,笔者认为主要需要从以下几方面开展深入探索:
(1)解决大数据的获取和管理问题:基于物联网标识技术,对设备和数据进行统一标识和管理(智能安防领域如监控信号、图像、视频等),从设备层面解决数据稀疏性问题,从而为大数据的分析和处理奠定底层基础。
(2)解决大数据的处理方法问题:采用分类处理技术,基于处理需求对数据进行分类,对实时数据进行流处理,对离线数据进行批处理,从而在保证处理效率的同时提高数据分析的有效性。
(3)解决大数据的应用模式问题:针对物联网应用在不同行业的特点,对大数据背景下不同行业之物联网业务的新需求进行探索,从而使大数据技术能够对智能安防等应用产生实际的价值。
综上所述,物联网与大数据都是当前业界关注的热门技术,如何使二者有机融合在一起,为应用提供网络、数据两方面的基础服务,是物联网和大数据相关应用发展的关键所在。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21