大数据也有黑暗面,what比why重要_数据分析师
对于大数据的四个特性我们当然了解,相关性也找到了,接下来就是如何利用大数据创造出价值。“大数据是什么”,“大数据跟我有什么关系”,这是很多人第一次听到大数据心中所产生的疑问。
据《30杂志》报道,麦尔•荀伯格在千余名想了解未来趋势的观众面前,做了一场精彩易懂的演说,告诉了企业及民众,什么是大数据。
大数据找出相关性
2009年,全球出现一种新的流感病毒H1N1,当时美国也无法幸免,疾病管制局(CDC)要求第一线的医师遇到H1N1流感病例,必须立刻通报。即使如此,通报速度仍总是慢一步,会晚1到2个星期。这样的时效让疾管局无法掌握真实情况,对症下药。
当时有几位Google 工程师在著名的《自然》科学期刊中发表了一篇论文。他们透过美国最常使用的前5000万个搜寻关键字,再与疾管局2003-2008年间的流感传播资料加以比对,用高达4.5亿种不同的数学模型,找出这些字出现的频率、时间及地点,有没有统计上的相关性(correlation)。最后被他们挖到宝了,这套软件找出了45个流感关键字眼,放进数学模型之后,预测结果与官方公布的真实资料吻合,有强烈的相关性。
Google 运用这套数学模型,再一次精准地掌握了流感发生的高峰及地区,让防疫工作同步进行,不落后。
再说另一例子,天文学来说,美国太空总署执行一项叫史隆数码巡天计划(Sloan Digital Sky Survey),从2000年开始,他们用位于美国新墨西哥州的天文望远镜去收集资料,计划开始不过几星期,收到的天文资料量就已超过了过去所有天文学历史的总和。到了2010年,这个计划收到了140TB 的资料量。但是接续的新计划,预计2016年登场,未来的巡天望远镜在5天内,就可收到这些资料量。
荀伯格说,当资料进入天文数字时代,荀伯格提醒:到底大数据有多大?其实不是那么重要,重点是在放大,扩大资料量等级,就能做出少量资料做不到的事。
举例来说,画一张马的图画,不是太难的事,但如果画了很多张马的图画,再以每秒24帧来呈现这些图画,就成了动画。这里要强调的是“量变”产生了“质变”,巨量就是这个道理,量的不同,也改变了本质。
what比why重要
量增加了,就出现另一项大数据的特色:乱(messy)。巨量资料的内容常是混乱不齐,质量不一。这是因为,巨量资料的收集过程中,它只要一个大方向即可,不需要讲究到一寸、一分。“这并不是说我们放弃了精准这件事,只是不再将精准奉为圭臬,”荀伯格说。
举例来说,我们要测量某个葡萄园的温度,如果整片葡萄园只有一支温度计,那这支温度计就要十分精准,不能故障,但也意味着它会很贵。换句话说,就是不能有任何杂乱或出错;相反的,如果我们今天在葡萄园里放了100支温度计去测温度,就可以用便宜一些,简单的温度计测出很精准的温度。
100支温度计代表的是量大,尽管其中几支可能不那么精准,但却可以收集到大量数据。比起只靠一支温度计来说,更可看到全貌,代表全体。那此时,一点杂乱就显得微不足道。
重点又来了,荀伯格忽然站起来向所有在场的观众说,大数据时代,资料数量比资料质量更重要。更不要为了一点点信息的偏差而影响了整体分析,想处理掉不精准的信息,成本会很高,也没有必要!
另一个有趣的例子是沃尔玛(73.54, 0.00, 0.00%)(Walmart),他们从庞大的交易记录上发现,在飓风来袭前,销量大增的不只是手电筒,还有一种美国小甜点 Top-Tarts,店家会在每次飓风来临前,把一盒一盒的 Top-Tarts放在风灾的必需品架上,方便急忙的顾客一次满足,“特别是草莓口味的,卖得最好。”
请注意,这里Walmart不去弄清楚为什么飓风时人们特别想吃Top-Tarts,而是把这个相关性找出来,直接采取更有利的营销动作。
荀伯格特别强调,大数据时代,what比why重要。
再举一个例子,发生在他朋友,也是大数据专家,任教于华盛顿大学的教授伊兹奥尼(Oren Etzioni)身上。2003 年时他想从西雅图塔机到洛杉矶参加弟弟的婚礼,他想愈早订票愈能买到便宜,几个月前他就买好了机票,也觉得买得很便宜。没想到他在航程中,出于好奇问了隔壁乘客买多少钱,何时买的。结果,一问之下,都回答最近才买,且都比他买得便宜,他十分生气。
下了飞机后,他决定去好好研究一下购买机票这件事。他发现,如果平均票价呈现下跌,买票就可以慢慢来;如果价格上扬中,你就要先订票,以免它水涨船高。
伊兹奥尼花了41天的时间去比对一旅游网站中超过12000笔的票价资料,他建立了一个模型,让模拟的消费者都省下了大笔的机票钱。在这模型里,消费者不懂“为什么(why)”,只知道“正是如此(what)”,消费者要决定现在是“买或是不买”。
后来这套模型发展出创业计划,他创了一个Farecast网站,消费者可以做出最佳判断,何时该买,还是不买。
大数据与价值
当我们知道了大数据的特性,也找到了相关性,接下来就是靠着它创造出价值来。
美国西雅图有一家专门收集车辆实时定位的资料公司Inrix,它的资料来自上亿台的车辆。同时,它也推出手机 App服务,通过提供服务换取特定的司机资料,包括他们曾开车去的地方、天气及路况等。他们将收到的资料再出售给一家投资基金,该基金根据大型零售商场附近的路况推测业绩,在零售商公布季报前,抢先决定该买入或卖出。因为车潮就是钱潮。这就是价值。
英国的罗尔斯罗伊斯是著名的飞机引擎制造商,它通过在引擎上安装了一个监控器,以掌控引擎是否正常运转。结果随着他们收集到的资料中发现,当引擎出现哪些信号异常,引擎可能会发生问题,这个监控变成了预测,大大减少飞安事故。罗尔斯罗伊斯从过去单单的制造引擎公司,转型为服务咨询,他们让数据产生出价值。
荀伯格说了许多大数据的美好,但他强调,大数据有其黑暗面:隐私当然是一个该关注的焦点,但他强调,更可怕的是各种算法,去预测是不是会患心脏病?或你是否会犯罪等。有时,依靠大数据做出的演算与预测,如果与自由意志不符时,孰轻孰重?
同时,我们也担心,愈来愈多的企业会掌握更多资料,但如此庞大的资料为他们所收集,拿去做了什么?什么用途?不一定能受到监督与管理,这是重要议题。
“巨量资料是为人类所掌控,而不是被巨量资料所掌控,”这是荀伯格最后的提醒。
数据分析咨询请扫描二维码
自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10在如今的数据驱动世界,数据分析师在各行各业中扮演着至关重要的角色。随着企业越来越依赖数据决策,数据分析职位的需求不断增加 ...
2024-11-10在信息爆炸的时代,做出正确的数据分析方法选择变得尤为重要。这不仅影响到数据分析的准确性,更关系到最终的决策效果。本文将详 ...
2024-11-10在当今竞争激烈的市场环境中,准确地把握市场动态和消费者需求是企业成功的关键。数据分析以其科学严谨的方法论,成为市场研究的 ...
2024-11-09在数据驱动的世界中,准确的数据分析是成功决策的基石。然而,数据分析的准确性并非一蹴而就,它需要多种方法和步骤的综合应用。 ...
2024-11-09推动银行的数字化转型是一个复杂且多维度的过程,涉及从战略、技术、组织到业务的多方面综合考量。这不仅仅是技术层面的变革,更 ...
2024-11-09国有企业作为国家经济的重要支柱,在提升经济效益和市场竞争力方面扮演着关键角色。然而,面对日益激烈的市场竞争和复杂的经济环 ...
2024-11-09业务分析师(Business Analyst,简称BA)是现代企业中不可或缺的角色。他们不仅是需求分析的专家,更是企业战略规划中的重要参与 ...
2024-11-09银行业正面临着一场全方位的数字化革命,旨在提升服务效率和客户体验,同时优化运营和增收。在这篇文章中,我们通过分析一些成功 ...
2024-11-09数据挖掘技术正在重新定义现代市场营销的方式。对于企业来说,能够深入了解消费者行为、需求和偏好是实现精准市场营销的关键, ...
2024-11-09在当今数据驱动的世界中,数据分析可视化已经成为一种必不可少的技能。它不仅帮助专业的数据分析师更好地传达信息,也使复杂的数 ...
2024-11-09在如今的数据驱动时代,掌握数据分析的工具和方法不仅是提高工作效率的关键,也是开拓职业机会的重要技能。数据分析涉及从数据的 ...
2024-11-08在现代商业环境中,企业正在逐步认识到数据挖掘技术在客户行为分析中的重要性。通过深度分析客户数据,这项技术不仅可以帮助企业 ...
2024-11-08数据挖掘分析是从大量数据中发现隐藏模式和有用信息的过程。尤其是在图数据挖掘中,提供了分析复杂关系和结构的独特视角。图数据 ...
2024-11-08在当今快速发展的商业环境中,提高运营效率已成为企业取得成功的关键因素。企业需要通过优化工作流程、利用技术创新和提升员工技 ...
2024-11-08Python 是一门非常适合初学者学习的编程语言。其简洁明了的语法、丰富的功能库,以及广泛的应用领域,使其成为学习编程的理想选 ...
2024-11-08在当今快速变化的商业环境中,金融数字化已经成为中小企业(SMEs)发展的关键驱动力。通过采用数字工具和技术,中小企业能够提高 ...
2024-11-08中小企业在全球经济中扮演着重要角色,然而,面对数字化浪潮,这些企业如何有效转型成为一大挑战。数字化转型不仅是技术的升级, ...
2024-11-08