畅谈大数据:扭转倒闭浪潮_数据分析师
如今,只看到一个大浪来了的人就如同P2P倒闭潮中的那些曾经的佼佼者,迅速被时代推向巅峰之后,迎来的是同样快速地被时代拉下云端,狠狠地摔在地上。想要一直站在时代的巅峰上,就要在乘着一个巨浪的时候就已经知道下一个巨浪在什么地方、何时起、何时落。
今年元旦过后没多久,一个令人震惊的消息从东莞传向全国,兆信通讯实业有限公司董事长高民自杀。据报道兆信通讯欠款累计4000余万,在工厂不景气的背景下,这四千万成了高民的催命符。在明知道年后就会有大笔订单的情况下,高民依然选择了走上绝路。由于各种原因导致的产业倒闭潮这几年数不胜数,从几年前的纺织业倒闭潮到今年依然还在进行的P2P倒闭潮,一批又一批的中小企业从蓬勃的春天迅速走向寒冬。
随着信息技术的发展,时代发展的速度越来越快。人类社会从需要用几百年酝酿一次工业革命发展到了几年一次小革命的时期。革命的浪潮催生的是一批又一批的超级巨头,同时也带动了行业内无数中小企业的发展。只是,从前那种单纯跟着大浪前进的企业运作方式似乎已经逐渐地被时代所淘汰。因为大浪升起的越高,落下的就越狠。能够将企业一把推起的巨浪,瞬间也能将企业狠狠地摔得支离破碎。
如今,只看到一个大浪来了的人就如同P2P倒闭潮中的那些曾经的佼佼者,迅速被时代推向巅峰之后,迎来的是同样快速地被时代拉下云端,狠狠地摔在地上。没有智慧的人还坐在地上感叹,都是时运不好。想要一直站在时代的巅峰上就要在乘着一个巨浪的时候就已经知道下一个巨浪在什么地方、何时起、何时落。
那么我们该如何站在巨浪中眺望呢?
大数据给了我们方向和答案。
我在之前的文章中讲到过狭义大数据论和广义大数据论。也提到过用狭义大数据来推算行业的规律。很多人读了以后其实并没有读懂,似懂非懂的那些人又觉得这些东西太高远,很难和实际结合。好多人透过各种方式联系我,希望我能够写一些所谓“接地气”的文章,一些能够真正解决企业,特别是中小企业困境的方案。
我其实一直犯了一个错误。什么错误呢?大数据论在我心里面装着,但却由于篇幅等限制没法全盘托出。后果就是,在通过已有的二十余篇文章一点一点地将大数据论告诉大家的过程中,总会有不连贯的地方。有些人只读了其中十篇,没有读到《畅谈大数据:广义大数据论与狭义大数据论》,对于我这套大数据论的基础体系并不了解。所以在读其他文章的时候经常摸不到头脑。或是跟着我的脚步将二十余篇文章都读个遍,却还是觉得似懂非懂。这些个问题,我很难在几篇文章里面说清楚。大约也是我的智慧还不够圆满。要是有老子、庄子、孔子这样的大家水平,短短几百几千字再大的道理也都讲的透透彻彻、清清楚楚。
那么怎么解决呢?在我看来,唯有将我对于大数据论的所有系统的理解,著成一部书,这样有足够的空间来将这个问题讲清楚,也可以让没有从头看这些文章的人有一个整体了解大数据论的机会。
在这本书出版之前,我还是会定期发表我对于大数据的看法,不过我会相对地讲得更细一点,更“接地气”一点。实际上,之前已经发表的二十余篇,如果真的读懂了,也是很“接地气”的。何以见得?拿人人都知道的万有引力举例。万有引力的理论高不高呢?自然是极高。那么它接不接地气呢?想想看多少工厂的机械在按照这个理论工作吧。水力发电、航空航天、飞机大炮不都是在这一理论下的应用?刚刚讲的革命浪潮,有起有落,也正是万有引力的作用。这万有引力,看似极高,实际上落得很低、很低。
正如大数据论,看似前沿、崭新,似乎与中小企业沾不到边,也无法解决棘手的问题。实际上相比锦上添花,大数据最大的作用是雪中送炭。
那么我们应该如何运用大数据来解决现在很多企业都面临着的破产危机呢?
这个问题我从狭义大数据和广义大数据两个角度来解释。
狭义大数据技术为我们提供了站在浪潮上眺望下一个浪潮的能力。通过对公司大数据的分析,我们能够准确地预测整个行业的走向,从而预测下一个浪潮的起点。这样才能够占领预先在浪潮将落时站住下一次浪起的先机。这说容易也容易,说不容易也很难。
说容易,是因为每一个企业都是行业内的一个因子,它的发展暗合着行业整个的发展。有一句成语叫做一叶知秋。分析一片叶子就能够知道秋天要来了。我们通过分析公司自己的大数据就足够预测行业的动向。于是我们就知道我在之前文章中讲到的大数据化对企业有多么重要。大数据化的进程需要一定时间,但是在执行的初期就能够见到效果。这是容易的部分。
大数据化后,企业手握着自己内部大数据,不论是分析客户心理、研发和改进产品还是掌握行业动态,都将会游刃有余。在实际操作中,一家公司的大数据与一万家公司在大数据的度量衡中没有什么太大区别。以天文数字计算的数据远远超过我们现阶段能够驾驭的最大量,那么即使将所有公司的大数据全部拿过来,也只是将总量从天文数字A增加到天文数字B。
那么大数据化对于中小企业的价值就不言而喻。狭义大数据的战场,企业规模是最次要的条件。
那么说容易却很难又如何解释?
一叶知秋固然很好,但是我们也要知道另一个成语,一叶障目。一门心思投入在狭义大数据的技术中,绝不是中小企业应有的行为。因为缺乏对大数据本质认识的企业,即使将内部大数据研究到极限,也无法做出正确的取舍、正确的决定。这就是中小企业和产业巨头之间的另一个决胜点。
我们的目标是让企业乘风破浪,一直保持上升的状态。而这个目标也是所有行业巨头的梦想。可是真正能够完成的有多少?根据美国著名商业顾问吉姆•柯林斯(JimCollins)的调查,全球五百强企业中仅有11家能够连年持续增长。穷尽全世界全部的精英,也只有11家企业能够完成这个目标。根据柯林斯的研究,这11家企业之所以成功的秘密,是因为他们的领导者都具备谦逊的品质。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12