
大数据时代对统计学和经济学有何影响
统计学具体不太了解, 大数据对经济学的影响如下:
短答案: 经济学界追求 causal inference 和 大数据追求的 predictive modeling 被广大经济学家认为有天壤之别, 所以大数据 (或者准确的说 statistical learning方法) 对目前经济学研究, 公共政策指定还没有实质性的帮助. 但是提供了不少实证方面的新思路新方法, 也对计量经济学提出新挑战 ( 社交网络数据 ). 未来障碍一个个突破后, 会有很大的应用.
经济学家是很追求效益的, 对于大的数据库肯定要尽可能的获取好处, 排除坏处. 大数据并不会替代常识, 经济学理论, 以及细致的研究设计. 大数据只会在这些方面进行弥补.
长答案:
1. 大数据的"大"
大数据最显著的特征就是 数据量大 ( large scope ) + 即时性 ( real time data )
比如: 你在超市收银机的数据, 网购的记录, 或者在线阅读( 比如在知乎的关注文章 ) 等等.
同时大数据时代带来了很多新的数据类型 (新在于对比以往经济学上运用的数据)
比如: 社交网络上发的微博或者朋友圈里所包含的文字数据 (这是以往经济分析中不太会使用的).
计量经济中的数据结构经常是矩阵型的, 也就是说通常收集 N 个观察项, K 个变量 (且 K << N)
大数据的数据结构显然不是这样, 很多情况下 K > N
计量中经常假设观察项之间是独立的, 但是在社交网络中观察项之间却是经常互相联结, 计量经济学未来在使用社交网络数据时如何处理这种观察项间的影响将成为一个关键.
2. 目前时髦的大数据应用: 预测建模 ( predictive modeling )
简而言之, 预测建模可以理解为: 已知 N 个观察 通过 K 个预测变量 来推导出相关性最强的 N 个结果.
大数据时代数据虽然丰富多了, 但是数据的质量却很容易下降.
比如: 纵使你有全国层次上百万级的观察项, 而你所研究的课题却是在市县层次. 容易造成大量不相关且描述不够详尽的数据.
而且这种统计方法面临一个权衡取舍:
在 K > N 的时候, 模型的样本外预测效果 ( out-of-sample performance ) 就会很差. 但是模型的样本内预测效果 (in-sample performance) 会很好.
而当经济学家考虑运用数据分析软件机器学习的方法时, 很容易想到卢卡斯批评( Lucas Critique ): 如果一个预测模型通过收集市场上已知的经济行为, 从而用来预测最优的政府干预政策时, 预测的结果可能并不准确, 因为预测出来的干预政策会改变市场的经济行为( 而这些正是和原模型中相关联的 )
3. 大数据时代已经为实证经济学研究提供了新的思路
美国统计局调查通货膨胀是使用派发问卷的方式, 回收的数据再分类到不同的通货膨胀指标中 (eg CPI). 大数据领域的 Billion Price Project ( BPP ) 运用实时的在线商店数据提供了一种 CPI 的替代指标 (这一指标在美国被验证 BPP 与 CPI 有很强的相关性).
其他的还有穆迪分析通过 MasterCard 和 Visa 的 Spending Pulse 来提供行业就业率的观测指标.
然而这些大数据还不够完美, 很显然这些数据的样本本身就不具有代表性. 比如: 利用 MasterCard 和 Visa 推导出的就业率指数首先就要求被调查者要至少有一张 MasterCard 或者 Visa.
4. 对经济学家的挑战
大数据分析: 公共领域以及政府数据是否容易获得.
数据管理以及编辑能力: 经济学家是否有能力快速的把大数据高效地应用在经济学思想.
最重要的, 急需开发出创新的数据总结, 描述和分析的方法.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03