大数据:在信息的海洋里寻找洞见_数据分析师
什么是 「大数据」 (Big data)?研究机构 Gartner 给出了这样的定义。「大数据」是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据是数据分析的前沿技术。从各种类型的数据中,快速获得有价值信息的能力,就是大数据技术,这也正是促使大数据技术具备走向众多企业的潜力。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理,通过「加工」实现数据的「增值」。
近 10 年来,政府和企业在世界范围内收集了大量互联网用户的数据,不仅仅是姓名和数字,而是一连串数据—大数据。 国际数据公司 (International Data Corporation) 最近预测大数据行业复合年增长率将达到 26.4%,在 2018 年达到 415 亿美元。这意味着越来越多的企业和组织将花费巨资研究分析大数据并获得有价值的信息。负责美国宇航局在加州帕萨迪纳市的喷气推进实验室大数据的 Chris Mattmann 表示,NASA 总共管理着几百 PB 容量的数据,几乎达到 1EB。
1 EB(Exabyte,艾可萨字节或艾字节) 是多少容量?这意味着 10 亿 GB,像这样:1000000000 GB。
这些巨大的数据扩散的速度如此之快以至于传统的数据技术跟不上它们的节奏。TNS 市场研究公司 (Taylor Nelson Sofres)亚太地区首席执行官 Chris Riquier 告诉我大数据对市场研究有非常大的影响。Riquier 表示,市场研究是建立在调研和问卷调查之上的。他讲道,在过去,调研的过程或花费数周的时间,最终用呈现的数据来分析企业规模和相关信息,通过整合社交媒体数据、搜索数据以及其他形式的大数据来做成报告,而现在我们有机会来「重新思考研究是如何完成的。」Riquier 表示,由于大数据,我们对「市场和决策力的反应已经发生了很大的变化。」
在今天的数字世界里,大数据通过跨行业、政府、科学、公共健康和学术界来发现相关性。在过去,从信息里的海洋里获得有用的数据信息对大多数人来说一直是可望而不可即的事情。直到去年,哈佛杂志在 2014 年刊登的一篇文章,标题为「为什么大数据是一桩大买卖?」( Why「Big Data」is a Big Deal ),文中表示通过改进的统计和计算方法, 包括关联数据集、可视化数据以及创建「大算法」等这些关键的创新,能使我们快速处理这些数据并为我们所用。从物理学家到文天学家,他们长期与大数据打交道,数据科学家和社会学家通过结合定量与定性的方法来从大数据中获得有用的信息。实际上,大数据正在创造一个新领域,哈佛大学工程与应用科学学院为此开设数据科学硕士学位。
在《大数据-一场改变我们生活、工作和思考的革命》一书中,Viktor Mayer-Schonberger 和 Kenneth Cukier 谈到企业是如何改变方式来做出决策—基于对大数据的分析。例如,谷歌通过其收集的大数据来预测预测禽流感的散布,其反应速度比美国疾病控制中心还要迅速。
据 华尔街日报 最近的一篇文章,加拿大银行使用由开源软件开发商 Apache 开发的 Hadoop 来储存和处理大数据,并能识别洗钱和欺诈等犯罪行为。
大数据之于普通人
哈佛、NASA、谷歌和 Apache 利用大数据的分析能力在世界范围内带来先进的技术,但就像我之前提到的,这并不意味着科学家们能很快从大数据中受益。让我们来看一看一些企业和公司在收集和管理大数据的几个方面。
其中大数据最主要的一个用途就是在市场中的搜索引擎优化(SEO)。公司和企业能利用搜索引擎公司如谷歌和必应提供的工具,结合不同的社交媒体数据,收集有用的信息来进行网络营销。咨询公司 Hall Analysis 的研究员 Joe Hall 主要研究搜索引擎优化和大数据,他表示有两种方法能使用大数据来处理搜索引擎优化。
他说:「第一种是处理与大数据集有关联的业务。在大多数情况下这意昧着大品牌和大企业能获得非常多的数据。」Hall 引用一个例子,一个客户有 1600 万个反向链接,或者从其他网站链接指向客户的网站。这些链接对谷歌和其他搜索引擎来说是一个非常重要的排名因素。他解释说,数据集的大小需要像模式分析那样有强大的处理各种任务的能力,并在这种水准下为反向链接分析改变规则。
Hall 表示,第二种方法是公司能利用大数据使搜索引擎优化变得更具态势感知能力。这表明使用相关性研究能更好了解排名因素以及用户点击率、排名结果页面等用户行为分析。这两种分析类型都需要大数据分析来达到最终的目的,并能有效帮助 SEO 专家开阔一个「更大的局面」。
另一方面是大数据在商业活动中能获得用户的忠诚度。举个例子,比如我是一个创业公司的创始人,在我成功运作公司的第一年后,公司业绩蒸蒸日上,于是我给自己放个大假,去夏威夷度假。但在机场安检的时候,检票员告知我由于我的箱子超重,我需要付额外的费用。但是检票员可能不知道,作为一个成功创业公司的创始人和 CEO,我和我的员工将会在全世界各大城市奔波,为航空公司贡献更多的里程。如果航空公司使用大数据整合来自信用卡公司、社交媒体源、博客、酒店等相关信息,他们会可能取消这样的额外收费还能获得一个忠诚的客户。
无论是大公司的 CEO 或是研究癌症的医生,或是一个淘宝店老板,使用大数据分析都将会为他们带来有价值的信息。当我们进入到这样一个时代:基于大数据分析来作出决策,这将不可避免地改变我们思考世界的方式。
今天这一代人出生在数字化时代。而下一代人将进入大数据时代。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31