部署大数据?请参考大数据分析平台架构_数据分析师
大数据分析处理架构图
数据源: 除该种方法之外,还可以分为离线数据、近似实时数据和实时数据。按照图中的分类其实就是说明了数据存储的结构,而特别要说的是流数据,它的核心就是数据的连续性和快速分析性;
计算层: 内存计算中的Spark是UC Berkeley的最新作品,思路是利用集群中的所有内存将要处理的数据加载其中,省掉很多I/O开销和硬盘拖累,从而加快计算。而Impala思想来源于Google Dremel,充分利用分布式的集群和高效存储方式来加快大数据集上的查询速度,这也就是我上面说到的近似实时查询;底层的文件系统当然是HDFS独大,也就是Hadoop的底层存储,现在大数据的技术除了微软系的意外,基本都是HDFS作为底层的存储技术。上层的YARN就是MapReduce的第二版,和在一起就是Hadoop最新版本。基于之上的应用有Hive,Pig Latin,这两个是利用了SQL的思想来查询Hadoop上的数据。
关键: 利用大数据做决策支持。R可以帮你在大数据上做统计分析,利用R语言和框架可以实现很专业的统计分析功能,并且能利用图形的方式展现;而Mahout就是一个集数据挖掘、决策支持等算法于一身的工具,其中包含的都是基于Hadoop来实现的经典算法,拿这个作为数据分析的核心算法集来参考还是很好的。
如此一个决策支持系统要怎么展现呢?其实这个和数据挖掘过程中的展现一样,无非就是通过表格和图标图形来进行展示,其实一份分类详细、颜色艳丽、数据权威的数据图标报告就是呈现给客户的最好方式!至于用什么工具来实现,有两个是最好的数据展现工具,Tableau和Pentaho,利用他们最为数据展现层绝对是最好的选择。
支持下一代企业计算关键技术的大数据处理平台:包括计算引擎、开发工具、管理工具及数据服务。计算引擎是AE的核心部分,提供支持从多数据源的异构数据进行实时数据集成、提供分布式环境下的消息总线、通过Service Gateway能够与第三方系统进行服务整合访问;设计了一个分布式计算框架,可以处理结构化和非结构化数据,并提供内存计算、规划计算、数据挖掘、流计算等各种企业计算服务。Data Studio包括了数据建模、开发、测试等集成开发环境。管理工具包括了实施、客户化及系统管理类工具。AE平台还可以通过UAP开发者社区提供丰富的数据服务。
AE架构图
新规划将BAP平台拆分为两部分,底层技术平台发展内存计算和数据处理,上层BI展现端重点发展仪表盘、web和移动设备展现。
两大产品通过数据处理接口和嵌入式应用服务于业务系统。
生态系统图
大数据处理平台担负着为BI系统提供语义层/OLAP引擎等底层技术支撑、BI及ERP系统的性能提升、以及数据挖掘、非结构化数据处理等系列数据整合与处理的解决方案。
具体模块包括:
语义层:为统一的查询建模平台和数据访问接口。除提供标准的查询建模能力外,还有语义驱动、语义规则、语义函数、描述器等等扩展方式,满足不同层面的扩展要求。
OLAP引擎:OLAP引擎提供全面的多维建模与分析能力。多维模型包括维度、层次、级别、属性、指标、计算成员等;同时预置系列分析函数,包括同比/环比/期比/基比等时间序列分析、占比/排名/方差等统计分析、指数回归和线性回归分析等;提供标准的MDX解析与执行,与数据仓库等模块结合,提供针对海量数据的实时分析和处理能力。
数据集成:能够胜任在大数据量、高并发、多维分析等环境背景下的实时分析。通过实时数据集成(RDI)提供的数据实时复制与DW的列式存储引擎,解决了以往在传统架构模式下,普通行式存储引擎无法实现的业务场景。
数据挖掘:支持运行于分布式文件系统和分布式计算平台之上的分布式数据挖掘算法,具体包括:逻辑斯特回归、朴素贝叶斯分类算法及其分布式实现;K均值、谱聚类算法及其分布式实现;潜在狄利克雷分配语义挖掘算法及其分布式实现;频繁模式挖掘分析算法及其分布式实现;协同过滤、概率矩阵分解推荐算法及其分布式实现;提供分布式挖掘算法的统一操作原语和执行引擎。
数据仓库:数据仓库提供针对海量数据进行高效的查询和分析。包括同时支持关系数据库、NoSQL数据库、以及分布式文件系统进行数据存储和加载的多存储引擎,基于MapReduce框架针对海量数据的高性能查询和分析,以及MapReduce 框架本身具有的高扩展性和容错性。
非结构化数据管理:非结构化数据不包含内嵌的语义结构描述信息,而信息系统需要结合其“内容”而不仅仅是数据本身进行查询、检索、分析与挖掘,因此非结构化数据管理系统需要实现非结构化数据的数据提取,提取的非结构化数据是进行后续处理的基础,具体包括结构化信息和底层/高层特征的提取两个。非结构化数据提取组件依赖于分布式文件系统和非结构化数据存储提供的原始数据作为数据源数据,依赖于非结构化数据存储来存储提取的元数据或者特征数据,依赖于并行计算框架来分布化执行过程,加快执行速度。
消息总线:包括主数据管理、集中身份管理、应用集成开发环境、集成监控管理等。满足集成平台的应用需求,支持界面集成、信息集成、服务集成、流程集成等集成方式。
分布式计算系统:包括分布式文件系统和分布式计算框架。分布式文件系统以高可靠的容错机制为核心,系统架构包括多元数据服务器、多数据存储服务器、多监管者、多客户端,支持大文件和大数据块的分布式存储与管理;分布式计算框架基于MapReduce与MPI计算模型,提供了一套并行计算框架;并利用物理机以及虚拟机的监控信息,实现对计算资源的合理分配,支持对大量工作任务的灵活切分和分布式调度。
流计算引擎:流计算引擎是为解决系统的实时性和一致性的高要求的实时数据处理框架,具备高可拓展性,能处理高频数据和大规模数据,实时流计算解决方案被应用于实时搜索、高频交易的大数据系统上。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30