Spark点燃近实时大数据之火_数据分析师
在用户体验达不到所宣传效果之后,IT领域中必然会随之出现“新的热门事件”。目前的新热门事件涉及大数据和对海量分布式数据的快速精准分析。
在目前的大数据领域中,Hadoop被作为存储和分配海量数据的软件,而MapReduce则被作为处理这些海量数据的引擎。两者整合在一起可以批处理一些对时效性没有过高要求的数据。
那么对于近实时大数据分析应当怎么办呢?作为最先进的下一代开源技术Apache Spark已经为视频、传感器、交易等流数据的分析、机器学习、预测建模创造了条件。它们可以用于基因组研究、封包检测、恶意软件探测和物联网。
Spark不仅可像MapReduce那样用于批处理,对于需要与数据集进行大量交互的算法,Spark还可以将这些运算的中间结果存储在缓存中。相比之下,在带入系统进行下一步处理前,MapReduce必须要将每步运算的结果写入磁盘。这种在内存中对弹性分布式数据集(RDD)的快速处理可以说是Apache Spark的核心能力。
Salient Federal Solutions公司一直致力于使用Spark为政府机构开发分析产品。该公司预测分析主任Dave Vennergrund称:“一旦执行对数据集的操作,它们能够进行相互连接,从而使得转换能够被迅速完成。加之它们能够同时跨多台机器做这一工作,这使得我们能够迅速做出反应。”
Spark的支持者认为,与竞争对手相比,Spark在扩展性和速度方面都具有优势。突出表现为在小数据集升级为拍字节后,它们仍然能够出色地工作。在2014年11月份的基准竞赛中,Apache Spark整理100太字节数据的速度比Hadoop MapReduce快了三倍,并且其机器集群的规模是MapReduce的十分之一。
据软件开发公司Typesafe近期观察显示,对Spark感兴趣的机构在数量上正在不断增长。数据显示,目前13%的受访者正在使用Spark,约30%的受访者正在对Spark进行评估,20%的受访者计划在今年某一时候开始使用Spark。另有6%的受访者希望在2016年或更晚时候使用Spark。此外,28%的受访者还对Spark不了解,认为它们还不成熟。
Salient 的数据分析中心副总裁Cindy Walker称:“对于政府来说,他们正在进行测试与评估。早期部署者都是那些有沙盒和研发预算的部门。我们的许多客户现在对大数据部署、内存分析、流解决方案都还没有划定能力底线。因此,我们目前正在使用Spark帮助他们设定合理的目标。”
虽然Spark还无法取代MapReduce,但是它们最终将成为大数据分析领域的一部分,推动数据被以更快的速度处理。
Apache Spark生态环境有以下几个组成部分:
Spark Core:平台的底层执行引擎,支持大量应用以及Java、Scala和Python等应用程序接口(API)。
Spark SQL(结构化查询语言) :用户可通过其探究数据。
Spark Streaming:可对来自推特的流数据进行分析,并且让Spark具备批处理能力。
机器学习库 (MLlib):一种分布式机器学习架构,交付高质量算法的速度比MapReduce快100倍。
Graph X:帮助用户以图形的形式表现文本和列表数据,找出数据中的不同关系。
SparkR:针对R统计语言的程序包。R用户可通过其在R壳中使用Spark功能。
BlinkDB:大型并行引擎。允许用户对海量数据执行类SQL查询,在速度重要性高于精确性的情况下非常有用。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28