怎样分析样本调研数据_数据分析师培训
从一个群体样本中获取群体的整体特征是许多研究设计和统计方法发展的基础。根据数据收集的算法、调研问题的类型和调研的目标,分析样本调研数据的方法各不相同。这篇文章会简洁明了的分析调研数据过程中的各种问题,同时会说明在一个完整的调研数据分析报告中应该包含什么。这些并不是基本准则而只是一些建议。
调研数据分析的过程应该包括以下步骤:
1、数据验证和探索性分析
2、确认性分析
3、数据解释
4、数据分析报告存档(用于将来的分析)
数据验证和探索性分析
数据验证主要负责确认调查问卷被正确的完成,并且调研数据具有一致性和逻辑性。以下是一些建议性的数据验证的内容,你应该去做但并不局限于此:
1、超出范围的录入:这些通常是由于较差的问卷设计或者数据输入错误。比如一个询问受访者年龄的问题得到200岁的未分类结果,这是绝不可能的。
2、逻辑上不一致的数据:当两个或者多个变量/问题的答案放在一起时不成逻辑。问卷设计过程中运用分支逻辑方法可以帮助避免这种数据的不一致性,尽管不能完全避免。
3、编码:这将包括所有的分类结果都被编码。比如,当一个有意义的预分配标签没有被分配时,结果将没有数值。如果需要将一些调研中的开放性问题分类,人类的专业知识,可能再加上定性分析工具的帮助,可以将问题很好的分组。
一旦上述的检验内容都已完成,探索性数据图表就可以产生。在探索性分析的过程中,数据清理的战线被拉长,因为分析总结可能带来其他的问题,一旦真的出现问题,你应该在探索性分析中研究这几个方面:
1、奇怪或者极端的数值,可能是需要更正的错误。
2、解释问题的主要图表。比如是不是在某种条件下男性的比例就是比不在这种条件下的比例高?
3、迹象表明修改变量后结果会更加清晰。比如进行重新编码或转换。
4、图表可能表明新设的问题会比原来的问题更具有说明性,这对于生成假设非常重要。
当简单随机抽样不能够作为统计方法调整的方式,比如有时加权方法对于得到明确的分析结果十分必要。但是,调研者通常在开始获取信息时就运用了很好的统计方法因而不需要调整,不过以下是一些常见的统计调整方法:
1、加权: 在调整的数据中,有些被调查者或者问题或多或少的会比其他的调查者和问题更加重要。这就保证了数据更能够代表调查群体的特性。典型的做法是根据调查者/事件在样本中被选中概率来赋予相应的权重。
2、变量重组:这种方法将在原有变量的基础上,通过重新定义和重新分类的方法产生新的变量。比如,解释一个问题所需要的分类科目可以合并重组为更少的分类科目,就像我们可以把十个分类科目合并成两个。
3、维度转换:根据可比性或兼容性的目标,调研数据会使用不同的长度和种类。
确认性分析
探索性分析可以描述发生了什么,但是这只是试探性的。我们需要确认图形信息是能反映真实情况的,因此我们需要不确定性预测,比如通过标准误差或置信区间来预测样本采集中的误差。从这个角度讲我们需要统计性分析。
统计性分析的步骤取决于以下几个方面:
1、调研的设计思路
2、响应变量的类型
3、探索性变量的类别
标准的抽样调查数据分析包括计算不同变量的比例以及它们的标准误差。连续性因变量可以通过简单线性回归或者多元线性回归进行分析。如果变量间并没有很好的线性关系,有时会用非线性回归的分析方法。对于有序变量之间的关系研究,我们可以运用Spearman秩相关或者Kendall’s tau的统计方法。对于名义变量的研究,包括对每个变量类别所占比例的统计,同时可以根据Chi-square tests(卡方检验)和Fisher’s exact test(Fisher精确检验)的方法探寻两个名义变量之间的关系。对于因变量为二分变量,自变量多于一个的情况,我们通常采用Logistic回归的方法进行分析。此外,如果因变量是有序的,我们可以采取有序Logistic回归的方法。当调研底层聚集大量观察值时,可以采用多层建模的方法进行分析。
如果调研者专注于研究主要发现或者样本调研目标,那么交叉列表在展示中将非常有效。交叉列表通常是总结报告和对比分析中的重要组成部分。
数据解释
当你完成数据分析,是时候考虑一下调研的结果对于手头上的问题有什么意义。以下是你在数据解释的过程中应该注意的方面:
1、清楚的阐述调研结果有什么实质性的发现。
2、讨论这些新的发现是不是能够对过去的发现提供更多的实例参考。比如可以对一些通用的理论和原则提供验证,或者对于现在的理论提出实质性的修改意见。
3、运用调研中的定量数据对于目标群体进行定量预测。
4、解释你现在的数据分析结果对于调研目标的意义,而且如果需要的话,对下一步调研的步骤给予建议。
数据分析报告存档(用于将来的分析)
分析报告存档是十分重要的!因为有人以后可能会借鉴复制你的调研结果,你可能以后也会参考之前自己的分析报告,因此如果没有很好的存档,将有可能很难回忆起来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31