京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS多因素方差分析(一般线性模型):方差成分分析
一、方差成分分析(数据分析-一般线性模型-方差分量估计)
1、概念:对于混合效应模型,“方差成分”过程估计每种随机效应对因变量方差的贡献。此过程对于混合模型的分析尤其有趣,例如分割图、单变量重复度量以及随机区组设计。通过计算方差成分,可以确定减小方差时的重点关注对象。
有四种不同的方法可用来估计方差成分:最小范数二次无偏估计(MINQUE)、方差分析(ANOVA)、最大似然(ML) 和受约束的最大似然(REML)。不同的方法具有各种不同的指定可供使用。
所有方法的缺省输出都包含方差成分估计。如果使用ML 方法或REML 方法,则还会显示一个渐近协方差矩阵表。对于ANOVA 方法,其他可用的输出包括ANOVA 表和期望均方,对于ML 和REML 方法,其他可用的输出包括迭代历史记录。“方差成分”过程与“GLM 单变量”过程完全兼容。
WLS 权重允许您指定一个变量,(数据分析师培训)用来针对加权分析为观察值赋予不同权重,这样也许可以补偿不同的测量精确度偏差。
2、示例。某一农业学校测量六个不同猪栏中的猪一个月的重量增加量。猪栏这个变量是具有六个水平的随机因子。(进行研究的六个猪栏是来自大的猪栏总体的随机样本。)调查发现重量增长的方差更大程度上归因于猪栏的不同而不是猪栏中的猪的不同。
3、数据。因变量是定量变量。因子是分类变量。它们可以具有数字值或最多8 个字节的字符串值。至少必须有一个因子是随机的。也就是说,因子的水平必须是可能的水平的随机样本。协变量是与因变量相关的定量变量。
4、假设。所有方法均假设随机效应的模型参数均值为零,方差为有限常数,并且模型参数互不相关。来自不同随机效应的模型参数也不相关。
残差项的均值也为零,方差也为有限常数。它与任何随机效应的模型参数都不相关。来自不同观察值的残差项被认为是不相关的。
基于这些假设,来自某一随机因子的相同水平的观察值是相关的。这就使得方差成分
模型与一般线性模型区分开来。
ANOVA 和MINQUE 不需要正态假设。它们对于对正态假设的适度偏差来说是稳健的。
ML 和REML 要求模型参数和残差项服从正态分布。
5、相关过程。在进行方差成分分析之前使用“探索”过程来检查数据。对于假设检验,使用“GLM 单变量”、“GLM 多变量”和“GLM 重复测量”。
二、模型(分析-一般线性模型-方差分量估计-模型)
具体使用方法和含义详见单变量一般线性模型。
三、选项(分析-一般线性模型-方差分量估计-选项)
1、方法。您可以选择四种方法中的一种估计方差成分。
1.1、MINQUE(最小范数二次无偏估计)可生成相对于固定效应不变的估计值。如果数据服从正态分布并且估计值是正确的,则此方法可生成所有无偏估计的最小方差。您可以为随机效应优先选择一种法。
1.2、ANOVA(方差分析)使用每种效应的类型I 或类型III 平方和计算无偏估计。ANOVA方法有时会生成负数方差估计,这可指示模型不正确、估计方法不合适或需要更多数据。
1.3、最大似然性(ML) 使用迭代生成与实际观察到的数据最一致的估计值(数据分析师)。这些估计值可能存在偏差。此方法是渐近正态分布。ML 和REML 估计值在转换时保持不变。此方法不考虑估计固定效应时使用的自由度。
1.4、约束最大似然法(REML) 估计在大多数(如果不是全部)平衡数据的情况下均可减少ANOVA 估计值。由于此方法要针对固定效应进行调整,因此其标准误应比ML 方法的标准误要小。此方法考虑估计固定效应时使用的自由度。
2、随机效果优先。统一意味着所有随机效应以及残差项对观察值具有相同的影响。零方案等同于假设随机效应方差为零。仅对MINQUE 方法可用。
3、平方和。类型I 平方和用于分层模型,分层模型常用于与方差成分有关的情况。如果选择GLM 中的缺省选项类型III,则方差估计值可用在“GLM 单变量”中,进行具有类型III 平方和的假设检验。仅对ANOVA 方法可用。
4、标准。您可以指定收敛标准和最大迭代次数。仅对ML 或REML 方法可用。
5、显示。对于ANOVA 方法,您可以选择显示平方和与期望均值平方。如果选择了最大似然性或约束最大似然法,则可以显示迭代历史记录。
四、保存(分析-一般线性模型-方差分量估计-保存)
1、方差成分估计。将方差成分估计值和估计标签保存到数据文件或数据集。这些数据可用于计算更多统计量或GLM 过程的进一步分析。例如,您可以使用这些数据计算置信区间或检验假设。
2、成分共变。将方差-协方差矩阵或相关矩阵保存到数据文件或数据集。仅当指定了最大似然或受约束的最大似然时才可用。
3、创建值的目的文件。允许您为包含方差成分估计值和/或矩阵的文件指定数据文件名称或外部文件名。可以在同一会话中继续使用数据集,但不会将其另存为文件,除非在会话结束之前明确将其保存为文件。数据集名称必须符合变量命名规则。cda数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11