大数据时代的安全边界_数据分析师培训
在移动互联网纵深发展的趋势下,毋庸置疑,人类已走入了大数据时代。当海量数据信息见证着人们的现实生活,大数据分析技术广泛应用,也使人们生活变得越来越透明,传统的安全边界越来越模糊。
根据IDC数据显示,目前互联网上的数据每年增长50%,每两年翻一番,全球互联网90%以上的数据是最近几年才产生的。
最早洞见大数据时代的数据科学家维克托·迈克·舍恩伯格在《大数据时代》一书中曾指出:大数据带给人类生活的益处是多方面的,不仅是人们获得新认知、创造新价值的源泉,还是改变市场、组织结构以及政府与公民关系的方法。但他同时也指出,大数据相比传统互联网,会给网络安全带来更多威胁,给用户隐私带来更大挑战。
大数据技术给数据使用的隐私问题带来了新挑战。对于企业来说,企业决策从“业务驱动”转变为“数据驱动”,企业需要遵守更严格的安全标准和保密规定,对数据存储与使用的安全性和隐私性要求由此提高。
对于个人而言,大数据时代,个人数据是一种信息资产,但这种资产却在用户不知情的情况下被收集、分析,以正当或不正当的方式用以牟利,个人生活似乎时刻被置于“老大哥”的监视之下,隐私安全受到了巨大挑战。
数据共享是大数据的现实价值,但隐私保护又关系到公民个体和国家整体的安全。如何平衡大数据使用和隐私保护是亟待解决的问题。
传统的隐私规范采用“告知与许可”原则,即让人们自主决定是否、如何以及经由谁来处理他们的信息,这就意味着将个人隐私保护的责任放在了每个公民个体的受众。但在大数据时代,由于二次使用的存在,“告知与许可”缺乏现实可行性,学者因此提出应改变传统的隐私保护体系,将隐私保护的责任由公民个体转移到数据使用者身上,即由数据使用者为其行为承担责任,而非停留于收集数据之初的是否取得个人同意。
围绕这一原则,相关学者目前又提出了数据脱敏技术和数据分类分级等一系列隐私保护手段。信息脱敏技术是指将数据脱敏为不含用户隐私的测试用数据,但是由于结构化数据在大数据时代关联性非常紧密,使得单个数据集的脱敏不能解决两个各自不敏感数据集放在一起就变为敏感数据集这类的问题,因此需要针对具体行业和具体问题开发、采用不同的脱敏技术。
数据分类分级从隐私安全与保护成本的角度出发,对数据进行分类和等级划分,进而根据不同需要对关键数据进行重点防护。但是传统的数据分级对于大数据时代来说过粗,许多研究机构正在探索进一步细化可行的分级标准。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21