大数据“识人”有绝招 网购记录也能攒信用_数据分析师
没有信用卡、没有贷款记录、没有央行个人征信系统里的任何相关信息,只要把自己的网上消费记录、话费详单等信息上传到一款手机APP上,你就有可能在10分钟之内获得几万元的贷款。看似天方夜谭的生活场景,金融大数据就能帮你实现。
网购记录助“草根”贷款
“对不起,您的情况,没有办法办理贷款。”想要贷款2万元做点小生意时,“85后”男孩崔浩遭到了银行的拒绝。
崔浩每月都有四五千元的固定收入。可他却没有信用卡、没有工资卡,在工地上打零工的他,所有工资都是以现金形式拿到手。
除了平日里吃饭、交房租,他所有的开销几乎都在网购中完成。惟一能够证明他手中有稳定现金流动的痕迹,就是一份稳定的网购消费记录。但这样的记录,银行现在还没法承认。
近日,通过一个名叫“信用钱包”的APP,崔浩却成功地从一家网贷平台拿到了贷款。
“人们的信用可以通过很多方式评估,我们的作用就是通过大数据分析和机器学习等技术,帮用户把这些零碎的信息数据收集和分析,让过去没法‘量化’的信用受到重视,为用户增信。”“信用钱包”研发企业、量化派创始人周灏说。
在“信用钱包”注册登录进入主页后,用户可以把淘宝消费账号、话费详单查询账号、教育信息查询账号等信息输入,并随即进入贷款申请页面。填入申请贷款额度、用途、时间等需求信息,系统就会在几分钟内自动生成一份用户风险分析报告。
是否为黑白名单用户、是否属于高风险人群……根据报告提供的这些信息,原本在银行、网贷平台、融资租赁公司眼中“信用不足”的人,也有可能获得贷款。
2012年,在美国留学并工作6年的周灏回国发展,当时没有户口、没有本地社保、没有身份证,即便他收入状况不错,拥有多张国外信用卡并且记录良好,但想要得到一张国内银行的信用卡却十分困难。
“评价‘信用’的标准其实可以很丰富,除了车房抵押、银行流水,消费记录、手机号码使用记录都应该成为一个人是否应该获得贷款的评价因素。”周灏说。
今年1月上线以来,量化派已经帮用户累计成功申请数千万元贷款,注册用户超过十万人。
10万个角度绘出“信用画像”
银行专业人员无法判别的信息,一家大数据企业凭什么就能从中看出风险高低?
在量化派位于中关村互联网金融中心11层的办公室里,周灏向记者解释了数据“识人”背后的秘密。
首先,数据分析人员需要用计算机建立一个数据模型。为了便于理解,人们可以把这个数据模型当作一个“黑盒子”。“黑盒子”会通过一项名叫“机器学习”的技术进行自我完善和调整。
举例来说,当既有数据显示,1万个信用良好的人全部都有两年稳定淘宝购物记录的话,“黑盒子”会“学”到一个小知识——有两年稳定淘宝购物记录的人信用风险可能比较小。
什么样的细节,“黑盒子”会判断它为“高风险”呢?“假设申请人填写的工作地、常住地为北京,他的手机通讯数据却显示他常年在边远地区活跃,那么有很大的可能是他说谎了。”周灏说。
通过与银行、征信机构合作,周灏的公司拿到了不少可供“黑盒子”自我学习的基础数据。当模型积累了成千上万个小知识,这个“黑盒子”逐渐成熟,便可以用来检验、筛选贷款人了。
当一名贷款申请人把自己的信息查询渠道授权给“信用钱包”,所有与他相关的信息会迅速进入这个“黑盒子”,接受检验。除了用户主动提交的信息,“信用钱包”还与征信机构等第三方机构合作共享信息。
“分析一名用户的信用情况,我们最多已经有十万个特征信息可供参考了。”周灏说。也就是说,为一位贷款人绘制一幅信用画像前,“黑盒子”最多已经有了十万个观察角度。
大数据下埋“金矿”
在国外从事信用模型分析工作时,一些有趣的现象让周灏被大数据的“聪明才智”所震撼。
根据数据分析结果,一天只刷一次牙和不刷牙的人,比每天刷两次牙的借款人,贷款风险较大。在美国的加油站,一天刷三次以上信用卡的人,贷款风险较大。工作人员探究后发现,一天刷两次牙的人,比较注意保护自己的健康,而他们通常也更加注意保护自己的信用健康,不会轻易借钱不还、损伤自己的名誉和信用。而一天内多次在加油站刷卡的人,可能存在刷卡套现的不良行为。
火眼金睛般捕捉人们不经意间留下的“痕迹”,大数据真能“识人”。
其实,除了帮助金融机构识别贷款人的信用度,大数据在本市的电商、文化创意、城市管理等领域都已经开始挖掘“金矿”。
在商业中,大数据被京东用来预测用户购买行为——注重生活质量的年轻女性在购买加湿器时,往往会顺便购买花生豆等零食,因此加湿器和花生豆摆放在相邻的货架能够提高物流效率;在文化创意领域,大数据被新影数讯公司用来预测票房——演员、题材内容、档期、首映口碑,都会成为影响一部电影卖座率的因素;在城市管理领域,大数据被用来提供决策参考——整个城市的地铁闸机刷卡数据被收集、分析后,能够直观地看出人流流向和拥堵情况。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21