大数据时代 带着个人信息的旧手机该去哪儿
这个时代,我们不得不承认,手机可能换得比衣服还快。那么问题来了:旧手机如何处理?送给亲戚朋友吧,担心是“二手货”不大好意思拿出手,拿到地摊上卖了吧,虽然最经济实惠但又不安全。
据媒体报道,一个小小的软件就足以将旧手机上的通讯录、短信、照片等信息恢复。这些手机上若曾有淘宝、支付宝、微信、银行等关键信息,一旦被人加以利用,岂不是造成了关键信息的泄露?
手机不光是“手机”
随着智能终端的兴起,手机的功能出现前所未有的丰富与拓展,越来越多的工作、生活、社交功能和应用陆续增添到手机之中。手机已经不仅仅是一个能打电话、发信息的通信工具,而是一个可以随时随地参与移动互联网生活的平台和入口。当然,在手机的功能不断增强的同时,它的社会化功能也不断延伸,比如手机承载着感情、代表着品位等。
在手机上,通讯录代表着圈子,微信等账号意味着社交生活,银行卡、身份证等关键信息则意味着财产的安全与否,当然聊天记录和视频照片等更是事关个人隐私。最关键的是,手机将自己打造成了一个综合信息平台,在这个平台上,所有的信息都得到了汇总、融合。
信息爆炸的时代里,最不缺的就是信息,当然最有价值的就是开发信息,而最让人揪心的莫过于怎么努力都保护不好自己的关键信息。也正因此,大数据营销聚焦于通过收集并整合信息然后发掘消费者个性特征,如何有效保护个人隐私和信息安全则更显重要与紧迫。
“旧手机”也并不旧
在以诺基亚为代表的功能机时代,手机更侧重于经摔耐用的特质。而如今,耐用早已不是衡量手机的关键条件,品牌、个性、时尚元素、摄像头、内存等才是衡量智能手机的重要因素。一个现实的状况是,围绕手机的话题和新闻越来越多,人们谈论手机的次数也不断增加,人们花在手机上的时间越来越长,单个人手上的手机数量越来越多,手机的保有量早已超过十多亿,围绕手机形成的产业链越来越长、越来越大,唯独“逆向”变化的是,人们更换手机的时间间隔变得越来越短。
从最初的几年更换一部手机,逐渐到20多个月,再不断压缩到18个月、15个月就更换一次,甚至有很多人几个月就更换一次。而所有被更换的手机,不管用了几个月或者一两年,都算是旧手机了。但是从产品的新旧程度上来看,这些所谓的旧手机其实并不旧。
更为重要的一点是,这些旧手机上都承载着截至目前的个人重要信息,这些信息包括身份证、银行、各种账号、通讯录等关键信息。一般而言,这些信息之于一个人是有着相对稳定性的,并不会因为手机的变化而出现彻底的更新。恰恰相反,这些重要的信息都藏在了手机之中。
得让旧手机“失忆”
从目前的科技发展节奏来看,手机上装载的应用功能会越来越庞大,手机上携带的信息量会越来越多,自然保护个人信息安全也会变得越来越重要,但是难度却越来越大,而更换手机的时间间隔会越来越短,旧手机会越来越多。
当然,处理旧手机的方式有多种,送给别人继续使用,通过以旧换新的方式折算,卖给旧手机回收商,扔进垃圾桶,丢在家里。这些常见的方法中,除了留在家里之外,其余的处理方法都有着泄露关键信息和个人隐私的风险,而堆在家里却潜藏着污染等风险。
旧手机终归是要处理的,但是前提是有效保护自己的信息安全,特别是关键信息和隐私。处理旧手机的难处并不在于回收价格及回收流程,而在于信息安全的保护上。那么,如何有效保护消费者的信息安全,让消费者能够安安心心地处理掉旧手机就值得深思。
首先在于消费者自身需不断强化一种意识,在处理旧手机时销毁掉原有的信息,让自己的手机彻底“失忆”。目前苹果可通过手机终端自身的功能删除相关内容,而安卓手机则需要采用步骤较多的方法来解决。其次,企业抓住契机有所作为。既然能够开发出恢复原有信息的软件,那么同样也能开发出清除原有信息的软件和程序。另外,360等“安保户”企业还可以进一步拓宽手机卫士的功能,手机厂家同样也可以增加手机的“失忆”能力,甚至可以将其作为卖点。
此外,公共权力机关还要不断强化监管,通过监管措施,让开发的恢复软件应用能够用到真正需要的地方,而不是盗取公民的个人信息,让开发的“失忆”程序也能真正用到保护个人信息安全而不是恶意破坏上,打击围绕手机信息安全而产生的不法分子和利益链条,如此等等。当然,还要从政策支持等方面着力,鼓励手机商场建立回收和再利用体系,这既保护了消费者个人信息安全,为企业找到了利润空间,也能解决旧手机等造成的环境污染等问题。
总之,旧手机将越来越多,但是旧手机上承载的信息量却愈来愈大,保护个人信息安全变得越来越迫切,面对一部旧手机首当其冲的是给其“失忆”,然后让硬件走进循环可持续利用的通道,这才是旧手机比较理想的归处。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21